Mathieu Quesnel-Vallières, David C Schultz, Alena Orlenko, Yancy Lo, Jason Moore, Marylyn Ritchie, David Roth, Martin Carroll, Yoseph Barash, Kristen W Lynch, Sara Cherry
{"title":"急性髓性白血病患者的髓系分化特征决定了曲美替尼的敏感性","authors":"Mathieu Quesnel-Vallières, David C Schultz, Alena Orlenko, Yancy Lo, Jason Moore, Marylyn Ritchie, David Roth, Martin Carroll, Yoseph Barash, Kristen W Lynch, Sara Cherry","doi":"10.1007/s40268-024-00491-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Acute myelogenous leukemia (AML) is a common blood cancer marked by heterogeneity in disease and diverse genetic abnormalities. Additional therapies are needed as the 5-year survival remains below 30%. Trametinib is a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor that is widely used in solid tumors and also in tumors with activating RAS mutations. A subset of patients with AML carry activating RAS mutations; however, a small-scale clinical trial with trametinib showed little efficacy. Here, we sought to identify transcriptomic determinants of trametinib sensitivity in AML.</p><p><strong>Methods: </strong>We tested the activity of trametinib against a panel of tumor cells from patients with AML ex vivo and compared this with RNA sequencing (RNA-Seq) data from untreated blasts from the same patient samples. We then used a correlation analysis between gene expression and trametinib sensitivity to identify potential biomarkers predictive of drug response.</p><p><strong>Results: </strong>We found that a subset of AML tumor cells were sensitive to trametinib ex vivo, only a fraction of which (3/10) carried RAS mutations. On the basis of our RNA-Seq analysis we found that markers of trametinib sensitivity are associated with a myeloid differentiation profile that includes high expression of CD14 and CLEC7A (Dectin-1), similar to the gene expression profile of monocytes. Further characterization confirmed that trametinib-sensitive samples display features of monocytic differentiation with high CD14 surface expression and were enriched for the M4 subtypes of the FAB classification.</p><p><strong>Conclusions: </strong>Our study identifies additional molecular markers that can be used with molecular features including RAS status to identify patients with AML that may benefit from trametinib treatment.</p>","PeriodicalId":49258,"journal":{"name":"Drugs in Research & Development","volume":" ","pages":"489-499"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456044/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trametinib Sensitivity is Defined by a Myeloid Differentiation Profile in Acute Myeloid Leukemia.\",\"authors\":\"Mathieu Quesnel-Vallières, David C Schultz, Alena Orlenko, Yancy Lo, Jason Moore, Marylyn Ritchie, David Roth, Martin Carroll, Yoseph Barash, Kristen W Lynch, Sara Cherry\",\"doi\":\"10.1007/s40268-024-00491-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Acute myelogenous leukemia (AML) is a common blood cancer marked by heterogeneity in disease and diverse genetic abnormalities. Additional therapies are needed as the 5-year survival remains below 30%. Trametinib is a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor that is widely used in solid tumors and also in tumors with activating RAS mutations. A subset of patients with AML carry activating RAS mutations; however, a small-scale clinical trial with trametinib showed little efficacy. Here, we sought to identify transcriptomic determinants of trametinib sensitivity in AML.</p><p><strong>Methods: </strong>We tested the activity of trametinib against a panel of tumor cells from patients with AML ex vivo and compared this with RNA sequencing (RNA-Seq) data from untreated blasts from the same patient samples. We then used a correlation analysis between gene expression and trametinib sensitivity to identify potential biomarkers predictive of drug response.</p><p><strong>Results: </strong>We found that a subset of AML tumor cells were sensitive to trametinib ex vivo, only a fraction of which (3/10) carried RAS mutations. On the basis of our RNA-Seq analysis we found that markers of trametinib sensitivity are associated with a myeloid differentiation profile that includes high expression of CD14 and CLEC7A (Dectin-1), similar to the gene expression profile of monocytes. Further characterization confirmed that trametinib-sensitive samples display features of monocytic differentiation with high CD14 surface expression and were enriched for the M4 subtypes of the FAB classification.</p><p><strong>Conclusions: </strong>Our study identifies additional molecular markers that can be used with molecular features including RAS status to identify patients with AML that may benefit from trametinib treatment.</p>\",\"PeriodicalId\":49258,\"journal\":{\"name\":\"Drugs in Research & Development\",\"volume\":\" \",\"pages\":\"489-499\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456044/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drugs in Research & Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40268-024-00491-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drugs in Research & Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40268-024-00491-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Trametinib Sensitivity is Defined by a Myeloid Differentiation Profile in Acute Myeloid Leukemia.
Background and objective: Acute myelogenous leukemia (AML) is a common blood cancer marked by heterogeneity in disease and diverse genetic abnormalities. Additional therapies are needed as the 5-year survival remains below 30%. Trametinib is a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor that is widely used in solid tumors and also in tumors with activating RAS mutations. A subset of patients with AML carry activating RAS mutations; however, a small-scale clinical trial with trametinib showed little efficacy. Here, we sought to identify transcriptomic determinants of trametinib sensitivity in AML.
Methods: We tested the activity of trametinib against a panel of tumor cells from patients with AML ex vivo and compared this with RNA sequencing (RNA-Seq) data from untreated blasts from the same patient samples. We then used a correlation analysis between gene expression and trametinib sensitivity to identify potential biomarkers predictive of drug response.
Results: We found that a subset of AML tumor cells were sensitive to trametinib ex vivo, only a fraction of which (3/10) carried RAS mutations. On the basis of our RNA-Seq analysis we found that markers of trametinib sensitivity are associated with a myeloid differentiation profile that includes high expression of CD14 and CLEC7A (Dectin-1), similar to the gene expression profile of monocytes. Further characterization confirmed that trametinib-sensitive samples display features of monocytic differentiation with high CD14 surface expression and were enriched for the M4 subtypes of the FAB classification.
Conclusions: Our study identifies additional molecular markers that can be used with molecular features including RAS status to identify patients with AML that may benefit from trametinib treatment.
期刊介绍:
Drugs in R&D is an international, peer reviewed, open access, online only journal, and provides timely information from all phases of drug research and development that will inform clinical practice. Healthcare decision makers are thus provided with knowledge about the developing place of a drug in therapy.
The Journal includes:
Clinical research on new and established drugs;
Preclinical research of direct relevance to clinical drug development;
Short communications and case study reports that meet the above criteria will also be considered;
Reviews may also be considered.