将注意力机制与生成式对抗网络相结合的图像风格转移模型。

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2332
Miaomiao Fu, Yixing Liu, Rongrong Ma, Binbin Zhang, Linli Wu, Lingli Zhu
{"title":"将注意力机制与生成式对抗网络相结合的图像风格转移模型。","authors":"Miaomiao Fu, Yixing Liu, Rongrong Ma, Binbin Zhang, Linli Wu, Lingli Zhu","doi":"10.7717/peerj-cs.2332","DOIUrl":null,"url":null,"abstract":"<p><p>Image style transfer is an important way to combine different styles and contents to generate new images, which plays an important role in computer vision tasks such as image reconstruction and image texture synthesis. In style transfer tasks, there are often long-distance dependencies between pixels of different styles and contents, and existing neural network-based work cannot handle this problem well. This paper constructs a generation model for style transfer based on the cycle-consistent network and the attention mechanism. The forward and backward learning process of the cycle-consistent mechanism could make the network complete the mismatch conversion between the input and output of the image. The attention mechanism enhances the model's ability to perceive the long-distance dependencies between pixels in process of learning feature representation from the target content and the target styles, and at the same time suppresses the style feature information of the non-target area. Finally, a large number of experiments were carried out in the monet2photo dataset, and the results show that the misjudgment rate of Amazon Mechanical Turk (AMT) perceptual studies achieves 45%, which verified that the cycle-consistent network model with attention mechanism has certain advantages in image style transfer.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2332"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419672/pdf/","citationCount":"0","resultStr":"{\"title\":\"A model integrating attention mechanism and generative adversarial network for image style transfer.\",\"authors\":\"Miaomiao Fu, Yixing Liu, Rongrong Ma, Binbin Zhang, Linli Wu, Lingli Zhu\",\"doi\":\"10.7717/peerj-cs.2332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image style transfer is an important way to combine different styles and contents to generate new images, which plays an important role in computer vision tasks such as image reconstruction and image texture synthesis. In style transfer tasks, there are often long-distance dependencies between pixels of different styles and contents, and existing neural network-based work cannot handle this problem well. This paper constructs a generation model for style transfer based on the cycle-consistent network and the attention mechanism. The forward and backward learning process of the cycle-consistent mechanism could make the network complete the mismatch conversion between the input and output of the image. The attention mechanism enhances the model's ability to perceive the long-distance dependencies between pixels in process of learning feature representation from the target content and the target styles, and at the same time suppresses the style feature information of the non-target area. Finally, a large number of experiments were carried out in the monet2photo dataset, and the results show that the misjudgment rate of Amazon Mechanical Turk (AMT) perceptual studies achieves 45%, which verified that the cycle-consistent network model with attention mechanism has certain advantages in image style transfer.</p>\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"10 \",\"pages\":\"e2332\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2332\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2332","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图像风格转换是将不同风格和内容组合生成新图像的重要方法,在图像重建和图像纹理合成等计算机视觉任务中发挥着重要作用。在风格转换任务中,不同风格和内容的像素之间往往存在长距离依赖关系,现有的基于神经网络的工作无法很好地解决这一问题。本文基于循环一致性网络和注意力机制,构建了风格转换的生成模型。循环一致机制的前向和后向学习过程可以使网络完成图像输入和输出之间的错配转换。注意力机制增强了模型在学习目标内容和目标风格特征表征过程中感知像素间远距离依赖关系的能力,同时抑制了非目标区域的风格特征信息。最后,在 monet2photo 数据集中进行了大量实验,结果表明亚马逊机械土耳其人(Amazon Mechanical Turk,AMT)感知研究的误判率达到了 45%,这验证了带有注意力机制的循环一致性网络模型在图像风格转移方面具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A model integrating attention mechanism and generative adversarial network for image style transfer.

Image style transfer is an important way to combine different styles and contents to generate new images, which plays an important role in computer vision tasks such as image reconstruction and image texture synthesis. In style transfer tasks, there are often long-distance dependencies between pixels of different styles and contents, and existing neural network-based work cannot handle this problem well. This paper constructs a generation model for style transfer based on the cycle-consistent network and the attention mechanism. The forward and backward learning process of the cycle-consistent mechanism could make the network complete the mismatch conversion between the input and output of the image. The attention mechanism enhances the model's ability to perceive the long-distance dependencies between pixels in process of learning feature representation from the target content and the target styles, and at the same time suppresses the style feature information of the non-target area. Finally, a large number of experiments were carried out in the monet2photo dataset, and the results show that the misjudgment rate of Amazon Mechanical Turk (AMT) perceptual studies achieves 45%, which verified that the cycle-consistent network model with attention mechanism has certain advantages in image style transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1