Stephanie E. Doyle, Courtney N. Cazzola, Cynthia M. Coleman
{"title":"创建高通量筛选兼容的体外成骨模型时的设计考虑因素","authors":"Stephanie E. Doyle, Courtney N. Cazzola, Cynthia M. Coleman","doi":"10.1016/j.slasd.2024.100184","DOIUrl":null,"url":null,"abstract":"<div><div>Inducing osteogenic differentiation <em>in vitro</em> is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple <em>in vitro</em> models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing <em>in vitro</em> assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis\",\"authors\":\"Stephanie E. Doyle, Courtney N. Cazzola, Cynthia M. Coleman\",\"doi\":\"10.1016/j.slasd.2024.100184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inducing osteogenic differentiation <em>in vitro</em> is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple <em>in vitro</em> models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing <em>in vitro</em> assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555224000467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis
Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.