Mengxue Zhang, Xiaomeng Li, Chuanbing Tang and Morgan Stefik*,
{"title":"使用三嵌段三元共聚物同时引导两个纳米粒子群","authors":"Mengxue Zhang, Xiaomeng Li, Chuanbing Tang and Morgan Stefik*, ","doi":"10.1021/acs.chemmater.4c0152410.1021/acs.chemmater.4c01524","DOIUrl":null,"url":null,"abstract":"<p >Multicomponent nanocomposites are important for diverse fields spanning energy conversion to optoelectronics and catalysis. Polymer structure-directing agents typically direct the placement of hydrophilic nanoparticles (HNPs) using hydrophilic interactions; however, this approach is generally limited to random mixtures when combining two types of HNPs. A new approach is shown where two distinct intermolecular interaction modalities enable independent control of two, respectively, functionalized nanoparticle populations. Specifically, the orthogonal interactions of the hydrophilic-fluorophobic structure-directing agents enabled independent control of the placement of both HNPs and fluorophobic nanoparticles (FNPs). This dual-nanoparticle assembly was first examined using a diblock poly(hydrophilic-<i>b</i>-fluorophobic) structure-directing agents where achieving well-defined assemblies required >32 wt % HNPs to preserve micelle templates. The addition of a glassy lipophilic block led to a triptych triblock poly(hydrophilic-<i>b</i>-lipophilic-<i>b</i>-fluorophobic) design that enabled vitrification of FNP-loaded micelles for robust dual-nanoparticle control with well-defined assemblies regardless of the FNP/HNP fractions. A novel micelle-chain morphology occurred with ≥ 89 wt % FNPs which may support unique transport applications. This micelle-chain morphology was associated with the depletion of chains at the core–corona interface, promoting micelle aggregation. Equilibration experiments were used to probe for dynamic exchange processes during various stages of processing from sequential solvent conditions. These mixing experiments identified that polymer chains and FNPs underwent dynamic exchange in acetone (plasticizer) but did not after transferring to water (nonplasticizer), thus confirming glassy kinetic entrapment at the final stage of processing. This collection of experiments highlights how triptych block polymers offer a new approach toward independent control over two types of nanoparticles.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Nanoparticle Populations Simultaneously Directed Using Triptych Triblock Terpolymers\",\"authors\":\"Mengxue Zhang, Xiaomeng Li, Chuanbing Tang and Morgan Stefik*, \",\"doi\":\"10.1021/acs.chemmater.4c0152410.1021/acs.chemmater.4c01524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multicomponent nanocomposites are important for diverse fields spanning energy conversion to optoelectronics and catalysis. Polymer structure-directing agents typically direct the placement of hydrophilic nanoparticles (HNPs) using hydrophilic interactions; however, this approach is generally limited to random mixtures when combining two types of HNPs. A new approach is shown where two distinct intermolecular interaction modalities enable independent control of two, respectively, functionalized nanoparticle populations. Specifically, the orthogonal interactions of the hydrophilic-fluorophobic structure-directing agents enabled independent control of the placement of both HNPs and fluorophobic nanoparticles (FNPs). This dual-nanoparticle assembly was first examined using a diblock poly(hydrophilic-<i>b</i>-fluorophobic) structure-directing agents where achieving well-defined assemblies required >32 wt % HNPs to preserve micelle templates. The addition of a glassy lipophilic block led to a triptych triblock poly(hydrophilic-<i>b</i>-lipophilic-<i>b</i>-fluorophobic) design that enabled vitrification of FNP-loaded micelles for robust dual-nanoparticle control with well-defined assemblies regardless of the FNP/HNP fractions. A novel micelle-chain morphology occurred with ≥ 89 wt % FNPs which may support unique transport applications. This micelle-chain morphology was associated with the depletion of chains at the core–corona interface, promoting micelle aggregation. Equilibration experiments were used to probe for dynamic exchange processes during various stages of processing from sequential solvent conditions. These mixing experiments identified that polymer chains and FNPs underwent dynamic exchange in acetone (plasticizer) but did not after transferring to water (nonplasticizer), thus confirming glassy kinetic entrapment at the final stage of processing. This collection of experiments highlights how triptych block polymers offer a new approach toward independent control over two types of nanoparticles.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01524\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01524","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Two Nanoparticle Populations Simultaneously Directed Using Triptych Triblock Terpolymers
Multicomponent nanocomposites are important for diverse fields spanning energy conversion to optoelectronics and catalysis. Polymer structure-directing agents typically direct the placement of hydrophilic nanoparticles (HNPs) using hydrophilic interactions; however, this approach is generally limited to random mixtures when combining two types of HNPs. A new approach is shown where two distinct intermolecular interaction modalities enable independent control of two, respectively, functionalized nanoparticle populations. Specifically, the orthogonal interactions of the hydrophilic-fluorophobic structure-directing agents enabled independent control of the placement of both HNPs and fluorophobic nanoparticles (FNPs). This dual-nanoparticle assembly was first examined using a diblock poly(hydrophilic-b-fluorophobic) structure-directing agents where achieving well-defined assemblies required >32 wt % HNPs to preserve micelle templates. The addition of a glassy lipophilic block led to a triptych triblock poly(hydrophilic-b-lipophilic-b-fluorophobic) design that enabled vitrification of FNP-loaded micelles for robust dual-nanoparticle control with well-defined assemblies regardless of the FNP/HNP fractions. A novel micelle-chain morphology occurred with ≥ 89 wt % FNPs which may support unique transport applications. This micelle-chain morphology was associated with the depletion of chains at the core–corona interface, promoting micelle aggregation. Equilibration experiments were used to probe for dynamic exchange processes during various stages of processing from sequential solvent conditions. These mixing experiments identified that polymer chains and FNPs underwent dynamic exchange in acetone (plasticizer) but did not after transferring to water (nonplasticizer), thus confirming glassy kinetic entrapment at the final stage of processing. This collection of experiments highlights how triptych block polymers offer a new approach toward independent control over two types of nanoparticles.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.