在 MAPbI3 包光体太阳能电池中使用铝和镁作为 ETL 的改性 TiO2 的建模与优化:SCAPS 1D 框架

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-09-12 DOI:10.1021/acsomega.4c0450510.1021/acsomega.4c04505
Abdullahi Usman,  and , Thiti Bovornratanaraks*, 
{"title":"在 MAPbI3 包光体太阳能电池中使用铝和镁作为 ETL 的改性 TiO2 的建模与优化:SCAPS 1D 框架","authors":"Abdullahi Usman,&nbsp; and ,&nbsp;Thiti Bovornratanaraks*,&nbsp;","doi":"10.1021/acsomega.4c0450510.1021/acsomega.4c04505","DOIUrl":null,"url":null,"abstract":"<p >The perovskite device, incorporating a modified nanostructure of TiO<sub>2</sub> as the electron transport layer, has been investigated to enhance its performance compared to the pure TiO<sub>2</sub> device. Various materials undergo electrochemical doping or treatment on TiO<sub>2</sub> to improve their photocatalytic application, thereby enhancing the current density, minimizing recombination, and improving device stability. In this study, a numerical SCAPS simulation was employed to validate experimental findings from the literature. According to the literature, this marks the first instance of doping Al<sup>3+</sup> and Mg<sup>2+</sup> on TiO<sub>2</sub> due to their ionic radius comparable to that of Ti<sup>4+</sup>, at different doping concentrations. The device was modeled and simulated with the experimental parameters of bandgap, series, and shunt resistances for pure TiO<sub>2</sub>, aluminum-doped TiO<sub>2</sub> (Al-TiO<sub>2</sub>), and magnesium-doped TiO<sub>2</sub> (Mg-TiO<sub>2</sub>). From the validated results, the Al-TiO<sub>2</sub> and Mg-TiO<sub>2</sub>-based devices’ configurations with minimum percentage errors of 0.427 and 2.771%, respectively, were selected and simulated across nearly 90 (90) configurations to determine the optimum device model. Optimizing absorber thickness, bandgap, doping concentration, metal electrode, as well as series and shunt resistance resulted in enhanced device performance. According to the proposed model, Al-TiO<sub>2</sub> and Mg-TiO<sub>2</sub> configurations achieved higher power conversion efficiency values of 19.260 and 19.860%, respectively. This improvement is attributed to the reduction in recombination rates through the injection of a higher photocurrent density.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04505","citationCount":"0","resultStr":"{\"title\":\"Modeling and Optimization of Modified TiO2 with Aluminum and Magnesium as ETL in MAPbI3 Perovskite Solar Cells: SCAPS 1D Frameworks\",\"authors\":\"Abdullahi Usman,&nbsp; and ,&nbsp;Thiti Bovornratanaraks*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0450510.1021/acsomega.4c04505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The perovskite device, incorporating a modified nanostructure of TiO<sub>2</sub> as the electron transport layer, has been investigated to enhance its performance compared to the pure TiO<sub>2</sub> device. Various materials undergo electrochemical doping or treatment on TiO<sub>2</sub> to improve their photocatalytic application, thereby enhancing the current density, minimizing recombination, and improving device stability. In this study, a numerical SCAPS simulation was employed to validate experimental findings from the literature. According to the literature, this marks the first instance of doping Al<sup>3+</sup> and Mg<sup>2+</sup> on TiO<sub>2</sub> due to their ionic radius comparable to that of Ti<sup>4+</sup>, at different doping concentrations. The device was modeled and simulated with the experimental parameters of bandgap, series, and shunt resistances for pure TiO<sub>2</sub>, aluminum-doped TiO<sub>2</sub> (Al-TiO<sub>2</sub>), and magnesium-doped TiO<sub>2</sub> (Mg-TiO<sub>2</sub>). From the validated results, the Al-TiO<sub>2</sub> and Mg-TiO<sub>2</sub>-based devices’ configurations with minimum percentage errors of 0.427 and 2.771%, respectively, were selected and simulated across nearly 90 (90) configurations to determine the optimum device model. Optimizing absorber thickness, bandgap, doping concentration, metal electrode, as well as series and shunt resistance resulted in enhanced device performance. According to the proposed model, Al-TiO<sub>2</sub> and Mg-TiO<sub>2</sub> configurations achieved higher power conversion efficiency values of 19.260 and 19.860%, respectively. This improvement is attributed to the reduction in recombination rates through the injection of a higher photocurrent density.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c04505\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c04505\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c04505","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与纯二氧化钛器件相比,为了提高其性能,研究人员对加入了改进型二氧化钛纳米结构作为电子传输层的过氧化物器件进行了研究。各种材料在二氧化钛上进行电化学掺杂或处理,以改善其光催化应用,从而提高电流密度、减少重组和改善器件稳定性。本研究采用 SCAPS 数值模拟来验证文献中的实验结果。根据文献记载,由于 Al3+ 和 Mg2+ 的离子半径与 Ti4+ 相当,在不同的掺杂浓度下,这标志着首次在 TiO2 上掺杂 Al3+ 和 Mg2+ 。利用纯 TiO2、掺铝 TiO2(Al-TiO2)和掺镁 TiO2(Mg-TiO2)的带隙、串联和并联电阻等实验参数,对该器件进行了建模和模拟。根据验证结果,选择了基于 Al-TiO2 和 Mg-TiO2 的器件配置,其最小百分比误差分别为 0.427% 和 2.771%,并对近 90 种配置进行了模拟,以确定最佳器件模型。通过优化吸收体厚度、带隙、掺杂浓度、金属电极以及串联和并联电阻,器件性能得到了提高。根据提出的模型,Al-TiO2 和 Mg-TiO2 配置实现了更高的功率转换效率值,分别为 19.260% 和 19.860%。这一改进归因于通过注入更高的光电流密度降低了重组率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Optimization of Modified TiO2 with Aluminum and Magnesium as ETL in MAPbI3 Perovskite Solar Cells: SCAPS 1D Frameworks

The perovskite device, incorporating a modified nanostructure of TiO2 as the electron transport layer, has been investigated to enhance its performance compared to the pure TiO2 device. Various materials undergo electrochemical doping or treatment on TiO2 to improve their photocatalytic application, thereby enhancing the current density, minimizing recombination, and improving device stability. In this study, a numerical SCAPS simulation was employed to validate experimental findings from the literature. According to the literature, this marks the first instance of doping Al3+ and Mg2+ on TiO2 due to their ionic radius comparable to that of Ti4+, at different doping concentrations. The device was modeled and simulated with the experimental parameters of bandgap, series, and shunt resistances for pure TiO2, aluminum-doped TiO2 (Al-TiO2), and magnesium-doped TiO2 (Mg-TiO2). From the validated results, the Al-TiO2 and Mg-TiO2-based devices’ configurations with minimum percentage errors of 0.427 and 2.771%, respectively, were selected and simulated across nearly 90 (90) configurations to determine the optimum device model. Optimizing absorber thickness, bandgap, doping concentration, metal electrode, as well as series and shunt resistance resulted in enhanced device performance. According to the proposed model, Al-TiO2 and Mg-TiO2 configurations achieved higher power conversion efficiency values of 19.260 and 19.860%, respectively. This improvement is attributed to the reduction in recombination rates through the injection of a higher photocurrent density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Toripalimab Plus Chemotherapy as a First-Line Therapy for Extensive-Stage Small Cell Lung Cancer Regulatory Fate of Cancer Indications in the European Union After Accelerated Approval in the US Advancing Global Pharmacoequity in Oncology Repurposing Semaglutide and Liraglutide for Alcohol Use Disorder Synaptic Density in Early Stages of Psychosis and Clinical High Risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1