关于辐照后 U-10Mo 燃料脆化和强度退化的关键机制

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-09-14 DOI:10.1016/j.engfracmech.2024.110474
{"title":"关于辐照后 U-10Mo 燃料脆化和强度退化的关键机制","authors":"","doi":"10.1016/j.engfracmech.2024.110474","DOIUrl":null,"url":null,"abstract":"<div><div>The four-point bending experimental findings clearly indicated that the post-irradiated U-10Mo fuels underwent noticeable macroscale embrittlement and strength degradation. During the irradiation process, fission gas bubbles (FGBs) are continuously formed and accumulated around the grain boundaries. Additionally, the irradiation-induced damage may lead to the degradation of mechanical properties of the U-10Mo skeleton. In this study, the representative volume element (RVE) models for post-irradiated U-10Mo fuels including the bubble-contained region and no-bubble region are established. Based on the Continuum Damage Mechanics (CDM) theory, the tensile test simulations are performed with the RVE models to obtain the macroscale stress–strain curves, using three assumed mechanical properties for the skeleton in the bubble-contained region. The research outcomes reveal that the strength degradation and fracture strain reduction of the U-10Mo fuel skeleton in the bubble-contained region are the dominant factors of the macroscale irradiation embrittlement and strength degradation of post-irradiated U-10Mo fuels. Furthermore, the FGBs enhanced local porosity aggravates this effect. This study sheds light on the mechanisms of irradiation-induced macroscale embrittlement and strength degradation in irradiated fuels, providing crucial insights for the safety assessment of fuel elements and components.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the critical mechanisms for the embrittlement and strength degradation of post-irradiated U-10Mo fuels\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The four-point bending experimental findings clearly indicated that the post-irradiated U-10Mo fuels underwent noticeable macroscale embrittlement and strength degradation. During the irradiation process, fission gas bubbles (FGBs) are continuously formed and accumulated around the grain boundaries. Additionally, the irradiation-induced damage may lead to the degradation of mechanical properties of the U-10Mo skeleton. In this study, the representative volume element (RVE) models for post-irradiated U-10Mo fuels including the bubble-contained region and no-bubble region are established. Based on the Continuum Damage Mechanics (CDM) theory, the tensile test simulations are performed with the RVE models to obtain the macroscale stress–strain curves, using three assumed mechanical properties for the skeleton in the bubble-contained region. The research outcomes reveal that the strength degradation and fracture strain reduction of the U-10Mo fuel skeleton in the bubble-contained region are the dominant factors of the macroscale irradiation embrittlement and strength degradation of post-irradiated U-10Mo fuels. Furthermore, the FGBs enhanced local porosity aggravates this effect. This study sheds light on the mechanisms of irradiation-induced macroscale embrittlement and strength degradation in irradiated fuels, providing crucial insights for the safety assessment of fuel elements and components.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006374\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006374","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

四点弯曲实验结果清楚地表明,辐照后的 U-10Mo 燃料发生了明显的宏观脆化和强度退化。在辐照过程中,裂变气泡(FGBs)在晶界周围不断形成和积累。此外,辐照引起的损伤可能导致 U-10Mo 骨架的机械性能退化。本研究建立了辐照后 U-10Mo 燃料的代表性体积元素(RVE)模型,包括含气泡区域和无气泡区域。基于连续损伤力学(CDM)理论,利用 RVE 模型进行拉伸试验模拟,以获得宏观应力-应变曲线。研究结果表明,含泡区 U-10Mo 燃料骨架的强度退化和断裂应变降低是导致辐照后 U-10Mo 燃料宏观辐照脆化和强度退化的主要因素。此外,FGBs 增强的局部孔隙率也加剧了这种效应。这项研究揭示了辐照诱导辐照燃料宏观脆化和强度退化的机理,为燃料元件和组件的安全评估提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the critical mechanisms for the embrittlement and strength degradation of post-irradiated U-10Mo fuels
The four-point bending experimental findings clearly indicated that the post-irradiated U-10Mo fuels underwent noticeable macroscale embrittlement and strength degradation. During the irradiation process, fission gas bubbles (FGBs) are continuously formed and accumulated around the grain boundaries. Additionally, the irradiation-induced damage may lead to the degradation of mechanical properties of the U-10Mo skeleton. In this study, the representative volume element (RVE) models for post-irradiated U-10Mo fuels including the bubble-contained region and no-bubble region are established. Based on the Continuum Damage Mechanics (CDM) theory, the tensile test simulations are performed with the RVE models to obtain the macroscale stress–strain curves, using three assumed mechanical properties for the skeleton in the bubble-contained region. The research outcomes reveal that the strength degradation and fracture strain reduction of the U-10Mo fuel skeleton in the bubble-contained region are the dominant factors of the macroscale irradiation embrittlement and strength degradation of post-irradiated U-10Mo fuels. Furthermore, the FGBs enhanced local porosity aggravates this effect. This study sheds light on the mechanisms of irradiation-induced macroscale embrittlement and strength degradation in irradiated fuels, providing crucial insights for the safety assessment of fuel elements and components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board A novel experimental method for studying rock collision Crystal plasticity-driven evaluation of notch fatigue behavior in IN718 Research on the microstructure, mechanical and fatigue performance of 7075/6061 dissimilar aluminum alloy fusion welding joint treated by nanoparticle and post-weld heat treatment Strain-gradient and damage failure behavior in particle reinforced heterogeneous matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1