基于脑电图⁎的大脑网络潜在表征

Q3 Engineering IFAC-PapersOnLine Pub Date : 2024-01-01 DOI:10.1016/j.ifacol.2024.08.564
Lucia Falconi , Giulia Cisotto , Mattia Zorzi
{"title":"基于脑电图⁎的大脑网络潜在表征","authors":"Lucia Falconi ,&nbsp;Giulia Cisotto ,&nbsp;Mattia Zorzi","doi":"10.1016/j.ifacol.2024.08.564","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG) is one of the most popular techniques to investigate normal as well as pathological cerebral mechanisms, as it allows to measure, non-invasively and in real-time, the brain activity. However, modeling EEG is still extremely challenging, because of its high-dimensionality, low signal-to-noise ratio, and high individual variability. This paper proposes a novel latent representation to study brain networks using EEG by means of a robust dynamic factor analysis (RDFA) approach. We investigate the ability of this latent representation to discriminate between two groups of subjects, i.e. alcoholic and healthy.</div><div>By RDFA, we can extract a limited number of highly explanatory factors, as low as 8, significantly discriminating between the two groups. Also, we show that different brain patterns can be identified across different stimulation scenarios and EEG locations. Although preliminary, this work could give support to domain experts while providing some clinically-meaningful insights to identify common patterns as well as individual characteristics in different groups of healthy and pathological subjects.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 15","pages":"Pages 414-419"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324013442/pdf?md5=8a6b4256540701eb03c0ac83e23a5853&pid=1-s2.0-S2405896324013442-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A latent representation of brain networks based on EEG⁎\",\"authors\":\"Lucia Falconi ,&nbsp;Giulia Cisotto ,&nbsp;Mattia Zorzi\",\"doi\":\"10.1016/j.ifacol.2024.08.564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electroencephalography (EEG) is one of the most popular techniques to investigate normal as well as pathological cerebral mechanisms, as it allows to measure, non-invasively and in real-time, the brain activity. However, modeling EEG is still extremely challenging, because of its high-dimensionality, low signal-to-noise ratio, and high individual variability. This paper proposes a novel latent representation to study brain networks using EEG by means of a robust dynamic factor analysis (RDFA) approach. We investigate the ability of this latent representation to discriminate between two groups of subjects, i.e. alcoholic and healthy.</div><div>By RDFA, we can extract a limited number of highly explanatory factors, as low as 8, significantly discriminating between the two groups. Also, we show that different brain patterns can be identified across different stimulation scenarios and EEG locations. Although preliminary, this work could give support to domain experts while providing some clinically-meaningful insights to identify common patterns as well as individual characteristics in different groups of healthy and pathological subjects.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 15\",\"pages\":\"Pages 414-419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324013442/pdf?md5=8a6b4256540701eb03c0ac83e23a5853&pid=1-s2.0-S2405896324013442-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324013442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324013442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)是研究正常和病理大脑机制最常用的技术之一,因为它可以无创和实时地测量大脑活动。然而,由于脑电图的高维性、低信噪比和高个体变异性,脑电图建模仍然极具挑战性。本文通过鲁棒动态因子分析(RDFA)方法,提出了一种利用脑电图研究大脑网络的新型潜表征。通过 RDFA,我们可以提取数量有限的高解释性因子(低至 8 个),从而显著区分两组受试者。此外,我们还表明,在不同的刺激场景和脑电图位置下,可以识别出不同的大脑模式。这项工作虽然是初步的,但可以为领域专家提供支持,同时提供一些对临床有意义的见解,以识别不同健康和病理受试者群体的共同模式和个体特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A latent representation of brain networks based on EEG⁎
Electroencephalography (EEG) is one of the most popular techniques to investigate normal as well as pathological cerebral mechanisms, as it allows to measure, non-invasively and in real-time, the brain activity. However, modeling EEG is still extremely challenging, because of its high-dimensionality, low signal-to-noise ratio, and high individual variability. This paper proposes a novel latent representation to study brain networks using EEG by means of a robust dynamic factor analysis (RDFA) approach. We investigate the ability of this latent representation to discriminate between two groups of subjects, i.e. alcoholic and healthy.
By RDFA, we can extract a limited number of highly explanatory factors, as low as 8, significantly discriminating between the two groups. Also, we show that different brain patterns can be identified across different stimulation scenarios and EEG locations. Although preliminary, this work could give support to domain experts while providing some clinically-meaningful insights to identify common patterns as well as individual characteristics in different groups of healthy and pathological subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
期刊最新文献
Torque-Minimizing Control Allocation for Overactuated Quadrupedal Locomotion Mesh Refinement with Early Termination for Dynamic Feasibility Problems Prediction of Placenta Previa from Serial Reading of Serum Human Chorionic Gonadotropin Late in the First Half of Pregnancy. Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands Sample Complexity of the Sign-Perturbed Sums Identification Method: Scalar Case*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1