Tongqing Zhou , Rafael C. Cavalcante , Chunxi Ge , Renny T. Franceschi , Peter X. Ma
{"title":"纳米纤维上的合成螺旋肽可激活细胞表面受体并协同促进临界骨缺损再生","authors":"Tongqing Zhou , Rafael C. Cavalcante , Chunxi Ge , Renny T. Franceschi , Peter X. Ma","doi":"10.1016/j.bioactmat.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>More than 500,000 bone grafting procedures are performed annually in the USA. Considering the significant limitations of available bone grafts, we previously invented a phase-separation technology to generate nanofibrous poly(<span>l</span>-lactic acid) (PLLA) scaffolds that mimic the bone matrix collagen in nanofiber geometry and enhance bone regeneration. Here we report the development of nanofibrous scaffolds with covalently attached synthetic peptides that mimic native collagen peptides to activate the two main collagen receptors in bone cells, discoidin domain receptor 2 (DDR2) and β1 integrins. We synthesized a PLLA-based graft-copolymer to enable covalent peptide conjugation via a click reaction. Using PLLA and the graft-copolymer, we developed 3D scaffolds with interconnected pores and peptides-containing nanofibers to activate DDR2 and β1 integrins of osteogenic cells. The degradation rate and mechanical properties of the scaffolds are tunable. The peptides-decorated nanofibrous scaffolds demonstrated 7.8 times more mineralized bone regeneration over the control scaffolds without the peptides in a critical-sized bone defect regeneration model after 8 weeks of implantation, showing a synergistic effect of the two peptides. This study demonstrates the power of scaffolds to mimic ECM at both nanometer and molecular levels, activating cell surface receptors to liberate the innate regenerative potential of host stem/progenitor cells.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 98-113"},"PeriodicalIF":18.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24003554/pdfft?md5=4187768ed883c4d9f3418a249d784f09&pid=1-s2.0-S2452199X24003554-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration\",\"authors\":\"Tongqing Zhou , Rafael C. Cavalcante , Chunxi Ge , Renny T. Franceschi , Peter X. Ma\",\"doi\":\"10.1016/j.bioactmat.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>More than 500,000 bone grafting procedures are performed annually in the USA. Considering the significant limitations of available bone grafts, we previously invented a phase-separation technology to generate nanofibrous poly(<span>l</span>-lactic acid) (PLLA) scaffolds that mimic the bone matrix collagen in nanofiber geometry and enhance bone regeneration. Here we report the development of nanofibrous scaffolds with covalently attached synthetic peptides that mimic native collagen peptides to activate the two main collagen receptors in bone cells, discoidin domain receptor 2 (DDR2) and β1 integrins. We synthesized a PLLA-based graft-copolymer to enable covalent peptide conjugation via a click reaction. Using PLLA and the graft-copolymer, we developed 3D scaffolds with interconnected pores and peptides-containing nanofibers to activate DDR2 and β1 integrins of osteogenic cells. The degradation rate and mechanical properties of the scaffolds are tunable. The peptides-decorated nanofibrous scaffolds demonstrated 7.8 times more mineralized bone regeneration over the control scaffolds without the peptides in a critical-sized bone defect regeneration model after 8 weeks of implantation, showing a synergistic effect of the two peptides. This study demonstrates the power of scaffolds to mimic ECM at both nanometer and molecular levels, activating cell surface receptors to liberate the innate regenerative potential of host stem/progenitor cells.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"43 \",\"pages\":\"Pages 98-113\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24003554/pdfft?md5=4187768ed883c4d9f3418a249d784f09&pid=1-s2.0-S2452199X24003554-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24003554\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24003554","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration
More than 500,000 bone grafting procedures are performed annually in the USA. Considering the significant limitations of available bone grafts, we previously invented a phase-separation technology to generate nanofibrous poly(l-lactic acid) (PLLA) scaffolds that mimic the bone matrix collagen in nanofiber geometry and enhance bone regeneration. Here we report the development of nanofibrous scaffolds with covalently attached synthetic peptides that mimic native collagen peptides to activate the two main collagen receptors in bone cells, discoidin domain receptor 2 (DDR2) and β1 integrins. We synthesized a PLLA-based graft-copolymer to enable covalent peptide conjugation via a click reaction. Using PLLA and the graft-copolymer, we developed 3D scaffolds with interconnected pores and peptides-containing nanofibers to activate DDR2 and β1 integrins of osteogenic cells. The degradation rate and mechanical properties of the scaffolds are tunable. The peptides-decorated nanofibrous scaffolds demonstrated 7.8 times more mineralized bone regeneration over the control scaffolds without the peptides in a critical-sized bone defect regeneration model after 8 weeks of implantation, showing a synergistic effect of the two peptides. This study demonstrates the power of scaffolds to mimic ECM at both nanometer and molecular levels, activating cell surface receptors to liberate the innate regenerative potential of host stem/progenitor cells.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.