Indong Jun , Haneul Choi , Hyeok Kim , Byoung Chan Choi , Hye Jung Chang , Youngjun Kim , Sung Woo Cho , James R. Edwards , Suk-Won Hwang , Yu-Chan Kim , Hyung-Seop Han , Hojeong Jeon
{"title":"探索激光纹理金属合金的潜力:通过体外和体内分析微调血管细胞反应","authors":"Indong Jun , Haneul Choi , Hyeok Kim , Byoung Chan Choi , Hye Jung Chang , Youngjun Kim , Sung Woo Cho , James R. Edwards , Suk-Won Hwang , Yu-Chan Kim , Hyung-Seop Han , Hojeong Jeon","doi":"10.1016/j.bioactmat.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>Medical stents are vital for treating vascular complications and restoring blood flow in millions of patients. Despite its widespread effectiveness, restenosis, driven by the complex interplay of cellular responses, remains a concern. This study investigated the reactions of vascular cells to nano/microscale wrinkle (nano-W and micro-W) patterns created on laser-textured nitinol (NiTi) surfaces by adjusting laser processing parameters, such as spot overlap ratio and line overlap ratio. Evaluation of topographical effects on endothelial and smooth muscle cells (SMCs) revealed diverse morphologies, proliferation rates, and gene expressions. Notably, microscale wrinkle patterns exhibited reduced monocyte adhesion and inflammation-related gene expression, demonstrating their potential applications in mitigating vascular complications after stent insertion. Additionally, an <em>ex vivo</em> metatarsal assay was utilized to bridge the gap between <em>in vitro</em> and <em>in vivo</em> studies, demonstrating enhanced angiogenesis on laser-textured NiTi surfaces. Laser-textured NiTi exhibits a guided formation process, emphasizing their potential to promote swift endothelialization. These findings underscore the efficacy of laser texturing for tailored cellular interactions on metallic surfaces and offer valuable insights into optimizing biocompatibility and controlling cellular responses, which may pave the way for innovative advances in vascular care and contribute to the ongoing improvement of stent insertion.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 181-194"},"PeriodicalIF":18.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452199X24004146/pdfft?md5=6d85835fa7ef9c1431888e2fda8d3024&pid=1-s2.0-S2452199X24004146-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis\",\"authors\":\"Indong Jun , Haneul Choi , Hyeok Kim , Byoung Chan Choi , Hye Jung Chang , Youngjun Kim , Sung Woo Cho , James R. Edwards , Suk-Won Hwang , Yu-Chan Kim , Hyung-Seop Han , Hojeong Jeon\",\"doi\":\"10.1016/j.bioactmat.2024.09.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medical stents are vital for treating vascular complications and restoring blood flow in millions of patients. Despite its widespread effectiveness, restenosis, driven by the complex interplay of cellular responses, remains a concern. This study investigated the reactions of vascular cells to nano/microscale wrinkle (nano-W and micro-W) patterns created on laser-textured nitinol (NiTi) surfaces by adjusting laser processing parameters, such as spot overlap ratio and line overlap ratio. Evaluation of topographical effects on endothelial and smooth muscle cells (SMCs) revealed diverse morphologies, proliferation rates, and gene expressions. Notably, microscale wrinkle patterns exhibited reduced monocyte adhesion and inflammation-related gene expression, demonstrating their potential applications in mitigating vascular complications after stent insertion. Additionally, an <em>ex vivo</em> metatarsal assay was utilized to bridge the gap between <em>in vitro</em> and <em>in vivo</em> studies, demonstrating enhanced angiogenesis on laser-textured NiTi surfaces. Laser-textured NiTi exhibits a guided formation process, emphasizing their potential to promote swift endothelialization. These findings underscore the efficacy of laser texturing for tailored cellular interactions on metallic surfaces and offer valuable insights into optimizing biocompatibility and controlling cellular responses, which may pave the way for innovative advances in vascular care and contribute to the ongoing improvement of stent insertion.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"43 \",\"pages\":\"Pages 181-194\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24004146/pdfft?md5=6d85835fa7ef9c1431888e2fda8d3024&pid=1-s2.0-S2452199X24004146-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24004146\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis
Medical stents are vital for treating vascular complications and restoring blood flow in millions of patients. Despite its widespread effectiveness, restenosis, driven by the complex interplay of cellular responses, remains a concern. This study investigated the reactions of vascular cells to nano/microscale wrinkle (nano-W and micro-W) patterns created on laser-textured nitinol (NiTi) surfaces by adjusting laser processing parameters, such as spot overlap ratio and line overlap ratio. Evaluation of topographical effects on endothelial and smooth muscle cells (SMCs) revealed diverse morphologies, proliferation rates, and gene expressions. Notably, microscale wrinkle patterns exhibited reduced monocyte adhesion and inflammation-related gene expression, demonstrating their potential applications in mitigating vascular complications after stent insertion. Additionally, an ex vivo metatarsal assay was utilized to bridge the gap between in vitro and in vivo studies, demonstrating enhanced angiogenesis on laser-textured NiTi surfaces. Laser-textured NiTi exhibits a guided formation process, emphasizing their potential to promote swift endothelialization. These findings underscore the efficacy of laser texturing for tailored cellular interactions on metallic surfaces and offer valuable insights into optimizing biocompatibility and controlling cellular responses, which may pave the way for innovative advances in vascular care and contribute to the ongoing improvement of stent insertion.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.