Jiangkun Hou , Shuanggen Wu , Weifeng Chen , Jianting Yang , Xunqiu Wang
{"title":"全氟丙基乙烯基醚在六氟环氧丙烷二聚物热解过程中的二聚反应","authors":"Jiangkun Hou , Shuanggen Wu , Weifeng Chen , Jianting Yang , Xunqiu Wang","doi":"10.1016/j.jfluchem.2024.110352","DOIUrl":null,"url":null,"abstract":"<div><div>Dimerization of perfluoropropyl vinyl ether (PPVE) generally reduces its yield and selectivity during the pyrolysis of hexafluoropropylene oxide dimer ((HFPO)<sub>2</sub>). However, the mechanism of PPVE dimerization is not well understood. In this paper, the PPVE dimer was obtained during the pyrolysis of (HFPO)<sub>2.</sub> Subsequently, the chemical structure of PPVE dimer was further determined by gas chromatography-mass spectrometry (GC–MS) and nuclear magnetic resonance (NMR). The results showed that the concentration of PPVE dimer rises in proportion to the extended reflux time of PPVE in the reaction system. Based on the experimental phenomenon, a possible generation mechanism of PPVE dimer was then proposed, and the possibility of the generation pathway was further verified in combination with density functional theory (DFT). In addition, to effectively reduce the production of PPVE dimer, crown ethers and quaternary ammonium salts were added to the reaction system as phase transfer catalysts. Among them, the phase transfer catalyst (15-crown-5) was more effective and reduced the PPVE dimer content from 1.34 % to 0.31 %. This work provides an idea to inhibit the dimerization of PPVE and increase the yield and selectivity of PPVE.</div></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"279 ","pages":"Article 110352"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimerization of perfluoropropyl vinyl ether during the pyrolysis of hexafluoropropylene oxide dimer\",\"authors\":\"Jiangkun Hou , Shuanggen Wu , Weifeng Chen , Jianting Yang , Xunqiu Wang\",\"doi\":\"10.1016/j.jfluchem.2024.110352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dimerization of perfluoropropyl vinyl ether (PPVE) generally reduces its yield and selectivity during the pyrolysis of hexafluoropropylene oxide dimer ((HFPO)<sub>2</sub>). However, the mechanism of PPVE dimerization is not well understood. In this paper, the PPVE dimer was obtained during the pyrolysis of (HFPO)<sub>2.</sub> Subsequently, the chemical structure of PPVE dimer was further determined by gas chromatography-mass spectrometry (GC–MS) and nuclear magnetic resonance (NMR). The results showed that the concentration of PPVE dimer rises in proportion to the extended reflux time of PPVE in the reaction system. Based on the experimental phenomenon, a possible generation mechanism of PPVE dimer was then proposed, and the possibility of the generation pathway was further verified in combination with density functional theory (DFT). In addition, to effectively reduce the production of PPVE dimer, crown ethers and quaternary ammonium salts were added to the reaction system as phase transfer catalysts. Among them, the phase transfer catalyst (15-crown-5) was more effective and reduced the PPVE dimer content from 1.34 % to 0.31 %. This work provides an idea to inhibit the dimerization of PPVE and increase the yield and selectivity of PPVE.</div></div>\",\"PeriodicalId\":357,\"journal\":{\"name\":\"Journal of Fluorine Chemistry\",\"volume\":\"279 \",\"pages\":\"Article 110352\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorine Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002211392400112X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorine Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002211392400112X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Dimerization of perfluoropropyl vinyl ether during the pyrolysis of hexafluoropropylene oxide dimer
Dimerization of perfluoropropyl vinyl ether (PPVE) generally reduces its yield and selectivity during the pyrolysis of hexafluoropropylene oxide dimer ((HFPO)2). However, the mechanism of PPVE dimerization is not well understood. In this paper, the PPVE dimer was obtained during the pyrolysis of (HFPO)2. Subsequently, the chemical structure of PPVE dimer was further determined by gas chromatography-mass spectrometry (GC–MS) and nuclear magnetic resonance (NMR). The results showed that the concentration of PPVE dimer rises in proportion to the extended reflux time of PPVE in the reaction system. Based on the experimental phenomenon, a possible generation mechanism of PPVE dimer was then proposed, and the possibility of the generation pathway was further verified in combination with density functional theory (DFT). In addition, to effectively reduce the production of PPVE dimer, crown ethers and quaternary ammonium salts were added to the reaction system as phase transfer catalysts. Among them, the phase transfer catalyst (15-crown-5) was more effective and reduced the PPVE dimer content from 1.34 % to 0.31 %. This work provides an idea to inhibit the dimerization of PPVE and increase the yield and selectivity of PPVE.
期刊介绍:
The Journal of Fluorine Chemistry contains reviews, original papers and short communications. The journal covers all aspects of pure and applied research on the chemistry as well as on the applications of fluorine, and of compounds or materials where fluorine exercises significant effects. This can include all chemistry research areas (inorganic, organic, organometallic, macromolecular and physical chemistry) but also includes papers on biological/biochemical related aspects of Fluorine chemistry as well as medicinal, agrochemical and pharmacological research. The Journal of Fluorine Chemistry also publishes environmental and industrial papers dealing with aspects of Fluorine chemistry on energy and material sciences. Preparative and physico-chemical investigations as well as theoretical, structural and mechanistic aspects are covered. The Journal, however, does not accept work of purely routine nature.
For reviews and special issues on particular topics of fluorine chemistry or from selected symposia, please contact the Regional Editors for further details.