传染病建模中的非线性混合模型和相关方法:系统性和批判性综述

IF 8.8 3区 医学 Q1 Medicine Infectious Disease Modelling Pub Date : 2024-09-18 DOI:10.1016/j.idm.2024.09.001
Olaiya Mathilde Adéoti , Schadrac Agbla , Aliou Diop , Romain Glèlè Kakaï
{"title":"传染病建模中的非线性混合模型和相关方法:系统性和批判性综述","authors":"Olaiya Mathilde Adéoti ,&nbsp;Schadrac Agbla ,&nbsp;Aliou Diop ,&nbsp;Romain Glèlè Kakaï","doi":"10.1016/j.idm.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>The level of surveillance and preparedness against epidemics varies across countries, resulting in different responses to outbreaks. When conducting an in-depth analysis of microinfection dynamics, one must account for the substantial heterogeneity across countries. However, many commonly used statistical model specifications lack the flexibility needed for sound and accurate analysis and prediction in such contexts. Nonlinear mixed effects models (NLMMs) constitute a specific statistical tool that can overcome these significant challenges. While compartmental models are well-established in infectious disease modeling and have seen significant advancements, Nonlinear Mixed Models (NLMMs) offer a flexible approach for handling heterogeneous and unbalanced repeated measures data, often with less computational effort than some individual-level compartmental modeling techniques. This study provides an overview of their current use and offers a solid foundation for developing guidelines that may help improve their implementation in real-world situations. Relevant scientific databases in the <em>Research4life</em> Access initiative programs were used to search for papers dealing with key aspects of NLMMs in infectious disease modeling (IDM). From an initial list of 3641 papers, 124 were finally included and used for this systematic and critical review spanning the last two decades, following the PRISMA guidelines. NLMMs have evolved rapidly in the last decade, especially in IDM, with most publications dating from 2017 to 2021 (83.33%). The routine use of normality assumption appeared inappropriate for IDM, leading to a wealth of literature on NLMMs with non-normal errors and random effects under various estimation methods. We noticed that NLMMs have attracted much attention for the latest known epidemics worldwide (COVID-19, Ebola, Dengue and Lassa) with the robustness and reliability of relaxed propositions of the normality assumption. A case study of the application of COVID-19 data helped to highlight NLMMs’ performance in modeling infectious diseases. Out of this study, estimation methods, assumptions, and random terms specification in NLMMs are key aspects requiring particular attention for their application in IDM.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468042724001003/pdfft?md5=a1cfb322095780bbffb2c061082d891e&pid=1-s2.0-S2468042724001003-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear mixed models and related approaches in infectious disease modeling: A systematic and critical review\",\"authors\":\"Olaiya Mathilde Adéoti ,&nbsp;Schadrac Agbla ,&nbsp;Aliou Diop ,&nbsp;Romain Glèlè Kakaï\",\"doi\":\"10.1016/j.idm.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The level of surveillance and preparedness against epidemics varies across countries, resulting in different responses to outbreaks. When conducting an in-depth analysis of microinfection dynamics, one must account for the substantial heterogeneity across countries. However, many commonly used statistical model specifications lack the flexibility needed for sound and accurate analysis and prediction in such contexts. Nonlinear mixed effects models (NLMMs) constitute a specific statistical tool that can overcome these significant challenges. While compartmental models are well-established in infectious disease modeling and have seen significant advancements, Nonlinear Mixed Models (NLMMs) offer a flexible approach for handling heterogeneous and unbalanced repeated measures data, often with less computational effort than some individual-level compartmental modeling techniques. This study provides an overview of their current use and offers a solid foundation for developing guidelines that may help improve their implementation in real-world situations. Relevant scientific databases in the <em>Research4life</em> Access initiative programs were used to search for papers dealing with key aspects of NLMMs in infectious disease modeling (IDM). From an initial list of 3641 papers, 124 were finally included and used for this systematic and critical review spanning the last two decades, following the PRISMA guidelines. NLMMs have evolved rapidly in the last decade, especially in IDM, with most publications dating from 2017 to 2021 (83.33%). The routine use of normality assumption appeared inappropriate for IDM, leading to a wealth of literature on NLMMs with non-normal errors and random effects under various estimation methods. We noticed that NLMMs have attracted much attention for the latest known epidemics worldwide (COVID-19, Ebola, Dengue and Lassa) with the robustness and reliability of relaxed propositions of the normality assumption. A case study of the application of COVID-19 data helped to highlight NLMMs’ performance in modeling infectious diseases. Out of this study, estimation methods, assumptions, and random terms specification in NLMMs are key aspects requiring particular attention for their application in IDM.</div></div>\",\"PeriodicalId\":36831,\"journal\":{\"name\":\"Infectious Disease Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468042724001003/pdfft?md5=a1cfb322095780bbffb2c061082d891e&pid=1-s2.0-S2468042724001003-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Disease Modelling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468042724001003\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724001003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

各国对流行病的监测和防备水平各不相同,因此对疫情的应对措施也不尽相同。在对微感染动态进行深入分析时,必须考虑到各国之间的巨大异质性。然而,许多常用的统计模型规格缺乏在这种情况下进行合理、准确分析和预测所需的灵活性。非线性混合效应模型(NLMM)是一种特殊的统计工具,可以克服这些重大挑战。分区模型在传染病建模中已得到广泛应用,并取得了重大进展,而非线性混合效应模型(NLMMs)则为处理异质性和非平衡重复测量数据提供了一种灵活的方法,其计算量往往低于某些个体水平的分区建模技术。本研究概述了 NLMMs 目前的使用情况,并为制定指导原则奠定了坚实的基础,这些指导原则可能有助于改进 NLMMs 在现实世界中的应用。研究人员利用 "Research4life Access initiative "计划中的相关科学数据库,搜索有关传染病建模(IDM)中NLMMs关键方面的论文。在最初的 3641 篇论文中,最终有 124 篇被收录,并按照 PRISMA 指南用于本系统性批判性综述,时间跨度为过去二十年。近十年来,NLMM发展迅速,尤其是在IDM领域,大多数论文发表于2017年至2021年(83.33%)。常规使用正态性假设似乎并不适合 IDM,因此出现了大量关于在各种估计方法下具有非正态误差和随机效应的 NLMM 的文献。我们注意到,由于正态性假设放宽命题的稳健性和可靠性,非正态性误差模型在全球最新流行病(COVID-19、埃博拉、登革热和拉萨)中引起了广泛关注。对 COVID-19 数据应用的案例研究有助于突出 NLMMs 在传染病建模中的性能。在这项研究中,NLMMs 的估计方法、假设和随机项规范是将其应用于 IDM 时需要特别注意的关键方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear mixed models and related approaches in infectious disease modeling: A systematic and critical review
The level of surveillance and preparedness against epidemics varies across countries, resulting in different responses to outbreaks. When conducting an in-depth analysis of microinfection dynamics, one must account for the substantial heterogeneity across countries. However, many commonly used statistical model specifications lack the flexibility needed for sound and accurate analysis and prediction in such contexts. Nonlinear mixed effects models (NLMMs) constitute a specific statistical tool that can overcome these significant challenges. While compartmental models are well-established in infectious disease modeling and have seen significant advancements, Nonlinear Mixed Models (NLMMs) offer a flexible approach for handling heterogeneous and unbalanced repeated measures data, often with less computational effort than some individual-level compartmental modeling techniques. This study provides an overview of their current use and offers a solid foundation for developing guidelines that may help improve their implementation in real-world situations. Relevant scientific databases in the Research4life Access initiative programs were used to search for papers dealing with key aspects of NLMMs in infectious disease modeling (IDM). From an initial list of 3641 papers, 124 were finally included and used for this systematic and critical review spanning the last two decades, following the PRISMA guidelines. NLMMs have evolved rapidly in the last decade, especially in IDM, with most publications dating from 2017 to 2021 (83.33%). The routine use of normality assumption appeared inappropriate for IDM, leading to a wealth of literature on NLMMs with non-normal errors and random effects under various estimation methods. We noticed that NLMMs have attracted much attention for the latest known epidemics worldwide (COVID-19, Ebola, Dengue and Lassa) with the robustness and reliability of relaxed propositions of the normality assumption. A case study of the application of COVID-19 data helped to highlight NLMMs’ performance in modeling infectious diseases. Out of this study, estimation methods, assumptions, and random terms specification in NLMMs are key aspects requiring particular attention for their application in IDM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infectious Disease Modelling
Infectious Disease Modelling Mathematics-Applied Mathematics
CiteScore
17.00
自引率
3.40%
发文量
73
审稿时长
17 weeks
期刊介绍: Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.
期刊最新文献
Application of multiple linear regression model and long short-term memory with compartmental model to forecast dengue cases in Selangor, Malaysia based on climate variables Network-based virus dynamic simulation: Evaluating the fomite disinfection effectiveness on SARS-CoV-2 transmission in indoor environment Dynamics of an SVEIR transmission model with protection awareness and two strains A tentative exploration for the association between influenza virus infection and SARS-CoV-2 infection in Shihezi, China: A test-negative study Modelling and investigating memory immune responses in infectious disease. Application to influenza a virus and sars-cov-2 reinfections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1