水合引起的各向异性膨胀限制了生物材料纤维的各向异性弹性

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-09-17 DOI:10.1016/j.jmbbm.2024.106749
Xander A. Gouws, Ana Mastnak, Laurent Kreplak, Andrew D. Rutenberg
{"title":"水合引起的各向异性膨胀限制了生物材料纤维的各向异性弹性","authors":"Xander A. Gouws,&nbsp;Ana Mastnak,&nbsp;Laurent Kreplak,&nbsp;Andrew D. Rutenberg","doi":"10.1016/j.jmbbm.2024.106749","DOIUrl":null,"url":null,"abstract":"<div><div>Naturally occurring protein fibers often undergo anisotropic swelling when hydrated. Within a tendon, a hydrated collagen fibril’s radius expands by 40% but its length only increases by 5%. The same effect, with a similar relative magnitude, is observed for single hair shafts. Fiber hydration is known to affect elastic properties. Here we show that <em>anisotropic</em> swelling constrains the anisotropic linear elastic properties of fibers. First we show, using data from disparate previously reported studies, that anisotropic swelling can be described as an approximately linear function of water content. Then, under the observation that the elastic energy of swelling can be minimized by the anisotropic shape, we relate swelling anisotropy to elastic anisotropy — assuming radial (transverse) symmetry within a cylindrical geometry. We find an upper bound for the commonly measured axial Poisson ratio <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>. This is significantly below recently estimated values for collagen fibrils extracted from tissue-level measurements, but is consistent with both single hair shaft and single collagen fibril mechanical and hydration studies. Using <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span>, we can then constrain the product <span><math><mrow><mi>γ</mi><mo>≡</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> — where <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></math></span> is the seldom measured transverse Poisson ratio and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> is the ratio of axial to radial Young’s moduli.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106749"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751616124003813/pdfft?md5=fa50c981380fde36cc4147a2c773261a&pid=1-s2.0-S1751616124003813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic swelling due to hydration constrains anisotropic elasticity in biomaterial fibers\",\"authors\":\"Xander A. Gouws,&nbsp;Ana Mastnak,&nbsp;Laurent Kreplak,&nbsp;Andrew D. Rutenberg\",\"doi\":\"10.1016/j.jmbbm.2024.106749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Naturally occurring protein fibers often undergo anisotropic swelling when hydrated. Within a tendon, a hydrated collagen fibril’s radius expands by 40% but its length only increases by 5%. The same effect, with a similar relative magnitude, is observed for single hair shafts. Fiber hydration is known to affect elastic properties. Here we show that <em>anisotropic</em> swelling constrains the anisotropic linear elastic properties of fibers. First we show, using data from disparate previously reported studies, that anisotropic swelling can be described as an approximately linear function of water content. Then, under the observation that the elastic energy of swelling can be minimized by the anisotropic shape, we relate swelling anisotropy to elastic anisotropy — assuming radial (transverse) symmetry within a cylindrical geometry. We find an upper bound for the commonly measured axial Poisson ratio <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>. This is significantly below recently estimated values for collagen fibrils extracted from tissue-level measurements, but is consistent with both single hair shaft and single collagen fibril mechanical and hydration studies. Using <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>z</mi><mi>x</mi></mrow></msub></math></span>, we can then constrain the product <span><math><mrow><mi>γ</mi><mo>≡</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub><mo>)</mo></mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> — where <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></math></span> is the seldom measured transverse Poisson ratio and <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>/</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>x</mi></mrow></msub></mrow></math></span> is the ratio of axial to radial Young’s moduli.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106749\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003813/pdfft?md5=fa50c981380fde36cc4147a2c773261a&pid=1-s2.0-S1751616124003813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003813\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003813","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

天然蛋白质纤维在水合时通常会发生各向异性的膨胀。在肌腱中,水合胶原纤维的半径会扩大 40%,但长度仅增加 5%。在单根头发轴上也能观察到相同的效果,但相对幅度相似。众所周知,纤维水合会影响弹性特性。在这里,我们展示了各向异性膨胀会限制纤维的各向异性线性弹性特性。首先,我们利用之前报告的不同研究数据表明,各向异性膨胀可被描述为含水量的近似线性函数。然后,根据各向异性形状可使膨胀的弹性能量最小化这一观点,我们将膨胀各向异性与弹性各向异性联系起来--假设在圆柱形几何体内径向(横向)对称。我们发现了通常测量的轴向泊松比 νzx<1/2 的上限。这明显低于最近从组织级测量中提取的胶原纤维的估计值,但与单根发轴和单根胶原纤维的机械和水合研究结果一致。利用νzx,我们就可以约束乘积γ≡(1-νxy)Ez/Ex--其中νxy 是很少测量的横向泊松比,Ez/Ex 是轴向与径向杨氏模量之比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropic swelling due to hydration constrains anisotropic elasticity in biomaterial fibers
Naturally occurring protein fibers often undergo anisotropic swelling when hydrated. Within a tendon, a hydrated collagen fibril’s radius expands by 40% but its length only increases by 5%. The same effect, with a similar relative magnitude, is observed for single hair shafts. Fiber hydration is known to affect elastic properties. Here we show that anisotropic swelling constrains the anisotropic linear elastic properties of fibers. First we show, using data from disparate previously reported studies, that anisotropic swelling can be described as an approximately linear function of water content. Then, under the observation that the elastic energy of swelling can be minimized by the anisotropic shape, we relate swelling anisotropy to elastic anisotropy — assuming radial (transverse) symmetry within a cylindrical geometry. We find an upper bound for the commonly measured axial Poisson ratio νzx<1/2. This is significantly below recently estimated values for collagen fibrils extracted from tissue-level measurements, but is consistent with both single hair shaft and single collagen fibril mechanical and hydration studies. Using νzx, we can then constrain the product γ(1νxy)Ez/Ex — where νxy is the seldom measured transverse Poisson ratio and Ez/Ex is the ratio of axial to radial Young’s moduli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Macroscopic creep behavior of spheroids derived from mesenchymal stem cells under compression Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy Editorial Board Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents Plastic strain localization in Bouligand structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1