GaS/PbS vdW 异质结构的电子和光学特性的可调谐性

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-09-18 DOI:10.1016/j.jpcs.2024.112348
Kuldeep Kumar , Munish Sharma , Ravindra Pandey
{"title":"GaS/PbS vdW 异质结构的电子和光学特性的可调谐性","authors":"Kuldeep Kumar ,&nbsp;Munish Sharma ,&nbsp;Ravindra Pandey","doi":"10.1016/j.jpcs.2024.112348","DOIUrl":null,"url":null,"abstract":"<div><div>A promising novel class of heterostructures has recently emerged, combining a semiconducting GaS monolayer with other 2D materials for energy-related applications. In this study, we considered the layered PbS to form the van der Waals heterostructure with GaS and investigated its properties using density functional theory. The GaS/PbS heterostructure exhibits a type-II heterostructure with an indirect bandgap of 1.65 eV, displaying enhanced light absorption across the visible spectrum. Moreover, the heterostructure's energy band gap shows tunability with an applied transverse electric field attributed to the spontaneous electric polarization within the lattice. Subsequently, it contributes to increased optical absorbance and light harvesting efficiency under ±0.2 V/Å electric field. The applied electric field also offers tunable band alignments (transition type-II and type-I), making it a potential candidate for solar cells that can optimize their efficiency based on varying light conditions.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112348"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunability in electronic and optical properties of GaS/PbS vdW heterostructure\",\"authors\":\"Kuldeep Kumar ,&nbsp;Munish Sharma ,&nbsp;Ravindra Pandey\",\"doi\":\"10.1016/j.jpcs.2024.112348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A promising novel class of heterostructures has recently emerged, combining a semiconducting GaS monolayer with other 2D materials for energy-related applications. In this study, we considered the layered PbS to form the van der Waals heterostructure with GaS and investigated its properties using density functional theory. The GaS/PbS heterostructure exhibits a type-II heterostructure with an indirect bandgap of 1.65 eV, displaying enhanced light absorption across the visible spectrum. Moreover, the heterostructure's energy band gap shows tunability with an applied transverse electric field attributed to the spontaneous electric polarization within the lattice. Subsequently, it contributes to increased optical absorbance and light harvesting efficiency under ±0.2 V/Å electric field. The applied electric field also offers tunable band alignments (transition type-II and type-I), making it a potential candidate for solar cells that can optimize their efficiency based on varying light conditions.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112348\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004839\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004839","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近出现了一类前景广阔的新型异质结构,它将半导体 GaS 单层与其他二维材料结合起来,用于能源相关应用。在本研究中,我们考虑用层状 PbS 与 GaS 形成范德华异质结构,并利用密度泛函理论研究了其性质。GaS/PbS 异质结构是一种 II 型异质结构,其间接带隙为 1.65 eV,在可见光谱范围内具有增强的光吸收能力。此外,异质结构的能带隙在施加横向电场时显示出可调谐性,这归因于晶格内的自发电极化。因此,在 ±0.2 V/Å 电场条件下,它有助于提高光吸收率和光收集效率。外加电场还提供了可调的带排列(II 型和 I 型转变),使其成为太阳能电池的潜在候选材料,可根据不同的光照条件优化其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunability in electronic and optical properties of GaS/PbS vdW heterostructure
A promising novel class of heterostructures has recently emerged, combining a semiconducting GaS monolayer with other 2D materials for energy-related applications. In this study, we considered the layered PbS to form the van der Waals heterostructure with GaS and investigated its properties using density functional theory. The GaS/PbS heterostructure exhibits a type-II heterostructure with an indirect bandgap of 1.65 eV, displaying enhanced light absorption across the visible spectrum. Moreover, the heterostructure's energy band gap shows tunability with an applied transverse electric field attributed to the spontaneous electric polarization within the lattice. Subsequently, it contributes to increased optical absorbance and light harvesting efficiency under ±0.2 V/Å electric field. The applied electric field also offers tunable band alignments (transition type-II and type-I), making it a potential candidate for solar cells that can optimize their efficiency based on varying light conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Editorial Board Effects of BaZrO3 on the phase evolution and energy storage capacities of BNT-based lead-free dielectric ceramics Synthesis of zirconium-based metal-organic framework under mild conditions and its application to the removal of cationic and anionic dyes from wastewater Synthesis and thermoluminescence characterization of β-irradiated MgB4O7 phosphor co-doped with Dy and Na Optimizing thermoelectric properties of CoTiP half-Heusler via doping with Br-, Se- and Ge atoms using first principle study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1