更高分辨率的低温电子显微镜结构揭示了 hERG 通道抑制剂的结合模式

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Structure Pub Date : 2024-09-24 DOI:10.1016/j.str.2024.08.021
Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata
{"title":"更高分辨率的低温电子显微镜结构揭示了 hERG 通道抑制剂的结合模式","authors":"Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata","doi":"10.1016/j.str.2024.08.021","DOIUrl":null,"url":null,"abstract":"During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors\",\"authors\":\"Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata\",\"doi\":\"10.1016/j.str.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.021\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在药物发现过程中,排除具有毒性作用的化合物至关重要。人ether-à-go-go相关基因(hERG)通道对维持心脏复极至关重要,由于它在药物诱发的心律失常中的作用,因此是药物安全性评估的关键靶点。抑制 hERG 通道可导致严重的心脏问题,包括 Torsades de Pointes 心动过速。了解 hERG 抑制机制对于避免这些毒性至关重要。一些结构研究已经阐明了抑制剂与 hERG 之间的相互作用。然而,定向和分辨率问题迄今限制了详细的深入研究。在这里,我们使用地高辛来分析 hERG 的 apo 状态,从而解决了取向问题并提高了分辨率。我们确定了与阿司咪唑结合的 hERG 的结构,显示了孔途径的清晰图谱。利用这一策略,我们还分析了 E-4031 和匹莫齐特的结合模式。这些关于抑制剂与 hERG 相互作用的见解可能有助于更安全的药物设计并提高心脏安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors
During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure
Structure 生物-生化与分子生物学
CiteScore
8.90
自引率
1.80%
发文量
155
审稿时长
3-8 weeks
期刊介绍: Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome. In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.
期刊最新文献
Unveiling the structural proteome of an Alzheimer’s disease rat brain model Protein translocation through α-helical channels and insertases The kinetoplastid kinetochore protein KKT23 acetyltransferase is a structural homolog of GCN5 that acetylates the histone H2A C-terminal tail Structure and dynamics of the active site of hen egg-white lysozyme from atomic resolution neutron crystallography Structural basis of signaling complex inhibition by IL-6 domain-swapped dimers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1