{"title":"更高分辨率的低温电子显微镜结构揭示了 hERG 通道抑制剂的结合模式","authors":"Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata","doi":"10.1016/j.str.2024.08.021","DOIUrl":null,"url":null,"abstract":"During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors\",\"authors\":\"Yasuomi Miyashita, Toshio Moriya, Takafumi Kato, Masato Kawasaki, Satoshi Yasuda, Naruhiko Adachi, Kano Suzuki, Satoshi Ogasawara, Tetsuichiro Saito, Toshiya Senda, Takeshi Murata\",\"doi\":\"10.1016/j.str.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.08.021\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.08.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Improved higher resolution cryo-EM structures reveal the binding modes of hERG channel inhibitors
During drug discovery, it is crucial to exclude compounds with toxic effects. The human ether-à-go-go-related gene (hERG) channel is essential for maintaining cardiac repolarization and is a critical target in drug safety evaluation due to its role in drug-induced arrhythmias. Inhibition of the hERG channel can lead to severe cardiac issues, including Torsades de Pointes tachycardia. Understanding hERG inhibition mechanisms is essential to avoid these toxicities. Several structural studies have elucidated the interactions between inhibitors and hERG. However, orientation and resolution issues have so far limited detailed insights. Here, we used digitonin to analyze the apo state of hERG, which resolved orientation issues and improved the resolution. We determined the structure of hERG bound to astemizole, showing a clear map in the pore pathway. Using this strategy, we also analyzed the binding modes of E-4031 and pimozide. These insights into inhibitor interactions with hERG may aid safer drug design and enhance cardiac safety.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.