Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu
{"title":"使用铜-钼双位催化剂在环己酮肟电合成中实现 90% 以上的法拉第效率","authors":"Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu","doi":"10.1021/jacs.4c11413","DOIUrl":null,"url":null,"abstract":"Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH<sub>2</sub>OH intermediate from NitRR under large current densities is challenging. We here report a Cu<sub>1</sub>MoO<sub><i>x</i></sub>/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH<sub>2</sub>OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g<sup>–1</sup> h<sup>–1</sup> at an industrially relevant current density of 0.5 A cm<sup>–2</sup>. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu<sub>1</sub>MoO<sub><i>x</i></sub>/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH<sub>2</sub>OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu–Mo Dual-Site Catalyst\",\"authors\":\"Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu\",\"doi\":\"10.1021/jacs.4c11413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH<sub>2</sub>OH intermediate from NitRR under large current densities is challenging. We here report a Cu<sub>1</sub>MoO<sub><i>x</i></sub>/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH<sub>2</sub>OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g<sup>–1</sup> h<sup>–1</sup> at an industrially relevant current density of 0.5 A cm<sup>–2</sup>. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu<sub>1</sub>MoO<sub><i>x</i></sub>/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH<sub>2</sub>OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11413\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11413","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
与硝酸盐电还原反应(NitRR)相结合,从环己酮电合成环己酮肟(CHO,尼龙-6 工业的重要原料)为传统的能耗工艺提供了一种前景广阔的替代方法。然而,由于在大电流密度下从 NitRR 中选择性地生产 *NH2OH 中间体具有挑战性,因此该工艺仍然存在效率低的问题。我们在此报告了一种 Cu1MoOx/掺氮碳(NC)电催化剂,该催化剂具有高密度的 Cu-Mo 双位点,可用于 NitRR 选择性地产生并稳定 *NH2OH,随后的环己酮氧化在工业相关的 0.5 A cm-2 电流密度下实现了 94.5% 的最高 CHO 法拉第效率和 3.0 mol g-1 h-1 的产率。此外,原位表征证明,Cu1MoOx/NC 中的 Cu-Mo 双位点能有效抑制 NitRR 含羟基中间体的加氢脱氧反应,选择性地产生 *NH2OH,从而高效地实现环己酮氧化。这项研究为利用含氮废物电合成 CHO 提供了一种高性能催化剂,在 CHO 的工业生产中具有广阔的应用前景。
Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu–Mo Dual-Site Catalyst
Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH2OH intermediate from NitRR under large current densities is challenging. We here report a Cu1MoOx/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH2OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g–1 h–1 at an industrially relevant current density of 0.5 A cm–2. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu1MoOx/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH2OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.