使用铜-钼双位催化剂在环己酮肟电合成中实现 90% 以上的法拉第效率

IF 3.784 3区 化学 Q1 Chemistry ACS Combinatorial Science Pub Date : 2024-09-24 DOI:10.1021/jacs.4c11413
Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu
{"title":"使用铜-钼双位催化剂在环己酮肟电合成中实现 90% 以上的法拉第效率","authors":"Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu","doi":"10.1021/jacs.4c11413","DOIUrl":null,"url":null,"abstract":"Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH<sub>2</sub>OH intermediate from NitRR under large current densities is challenging. We here report a Cu<sub>1</sub>MoO<sub><i>x</i></sub>/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH<sub>2</sub>OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g<sup>–1</sup> h<sup>–1</sup> at an industrially relevant current density of 0.5 A cm<sup>–2</sup>. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu<sub>1</sub>MoO<sub><i>x</i></sub>/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH<sub>2</sub>OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu–Mo Dual-Site Catalyst\",\"authors\":\"Runyao Zhao, Yiding Wang, Jiaju Fu, Fengtao Zhang, Linzi Wen, Yanfei Zhao, Bo Guan, Buxing Han, Zhimin Liu\",\"doi\":\"10.1021/jacs.4c11413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH<sub>2</sub>OH intermediate from NitRR under large current densities is challenging. We here report a Cu<sub>1</sub>MoO<sub><i>x</i></sub>/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH<sub>2</sub>OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g<sup>–1</sup> h<sup>–1</sup> at an industrially relevant current density of 0.5 A cm<sup>–2</sup>. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu<sub>1</sub>MoO<sub><i>x</i></sub>/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH<sub>2</sub>OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11413\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11413","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

与硝酸盐电还原反应(NitRR)相结合,从环己酮电合成环己酮肟(CHO,尼龙-6 工业的重要原料)为传统的能耗工艺提供了一种前景广阔的替代方法。然而,由于在大电流密度下从 NitRR 中选择性地生产 *NH2OH 中间体具有挑战性,因此该工艺仍然存在效率低的问题。我们在此报告了一种 Cu1MoOx/掺氮碳(NC)电催化剂,该催化剂具有高密度的 Cu-Mo 双位点,可用于 NitRR 选择性地产生并稳定 *NH2OH,随后的环己酮氧化在工业相关的 0.5 A cm-2 电流密度下实现了 94.5% 的最高 CHO 法拉第效率和 3.0 mol g-1 h-1 的产率。此外,原位表征证明,Cu1MoOx/NC 中的 Cu-Mo 双位点能有效抑制 NitRR 含羟基中间体的加氢脱氧反应,选择性地产生 *NH2OH,从而高效地实现环己酮氧化。这项研究为利用含氮废物电合成 CHO 提供了一种高性能催化剂,在 CHO 的工业生产中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu–Mo Dual-Site Catalyst
Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH2OH intermediate from NitRR under large current densities is challenging. We here report a Cu1MoOx/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu–Mo dual sites for NitRR to selectively produce and stabilize *NH2OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g–1 h–1 at an industrially relevant current density of 0.5 A cm–2. Furthermore, in situ characterizations evidenced that the Cu–Mo dual sites in Cu1MoOx/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH2OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
期刊最新文献
Reply. The role of endometrial scratching in IVF/ICSI: a critical appraisal of individual participant data meta-analysis. The role of endometrial scratching in IVF/ICSI: a critical appraisal of individual participant data meta-analysis. Does the holy grail of the evidence pyramid vindicate the controversial practice of endometrial scratching or is there room for healthy skepticism? Reply. How much evidence is needed to stop calling endometrial scratching 'controversial'? Cellular mechanisms of monozygotic twinning: clues from assisted reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1