Abdallah Namoun , Ahmad B. Alkhodre , Adnan Ahmad Abi Sen , Yazed Alsaawy , Hani Almoamari
{"title":"用于棕榈树疾病检测和分类的受感染枣椰树叶数据集","authors":"Abdallah Namoun , Ahmad B. Alkhodre , Adnan Ahmad Abi Sen , Yazed Alsaawy , Hani Almoamari","doi":"10.1016/j.dib.2024.110933","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents an image dataset of palm leaf diseases to aid the early identification and classification of date palm infections. The dataset contains images of 8 main types of disorders affecting date palm leaves, three of which are physiological, four are fungal, and one is caused by pests. Specifically, the collected samples exhibit symptoms and signs of potassium deficiency, manganese deficiency, magnesium deficiency, black scorch, leaf spots, fusarium wilt, rachis blight, and parlatoria blanchardi. Moreover, the dataset includes a baseline of healthy palm leaves. In total, 608 raw images were captured over a period of three months, coinciding with the autumn and spring seasons, from 10 real date farms in the Madinah region of Saudi Arabia. The images were captured using smartphones and an SLR camera, focusing mainly on inflected leaves and leaflets. Date palm fruits, trunks, and roots are beyond the focus of this dataset. The infected leaf images were filtered, cropped, augmented, and categorized into their disease classes. The resulting processed dataset comprises 3089 images. Our proposed dataset can be used to train classification deep learning models of infected date palm leaves, thus enabling the early prevention of palm tree-related diseases.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352340924008965/pdfft?md5=b0f13ae872c61d4510d117342f286c40&pid=1-s2.0-S2352340924008965-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dataset of infected date palm leaves for palm tree disease detection and classification\",\"authors\":\"Abdallah Namoun , Ahmad B. Alkhodre , Adnan Ahmad Abi Sen , Yazed Alsaawy , Hani Almoamari\",\"doi\":\"10.1016/j.dib.2024.110933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents an image dataset of palm leaf diseases to aid the early identification and classification of date palm infections. The dataset contains images of 8 main types of disorders affecting date palm leaves, three of which are physiological, four are fungal, and one is caused by pests. Specifically, the collected samples exhibit symptoms and signs of potassium deficiency, manganese deficiency, magnesium deficiency, black scorch, leaf spots, fusarium wilt, rachis blight, and parlatoria blanchardi. Moreover, the dataset includes a baseline of healthy palm leaves. In total, 608 raw images were captured over a period of three months, coinciding with the autumn and spring seasons, from 10 real date farms in the Madinah region of Saudi Arabia. The images were captured using smartphones and an SLR camera, focusing mainly on inflected leaves and leaflets. Date palm fruits, trunks, and roots are beyond the focus of this dataset. The infected leaf images were filtered, cropped, augmented, and categorized into their disease classes. The resulting processed dataset comprises 3089 images. Our proposed dataset can be used to train classification deep learning models of infected date palm leaves, thus enabling the early prevention of palm tree-related diseases.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008965/pdfft?md5=b0f13ae872c61d4510d117342f286c40&pid=1-s2.0-S2352340924008965-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924008965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924008965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dataset of infected date palm leaves for palm tree disease detection and classification
This article presents an image dataset of palm leaf diseases to aid the early identification and classification of date palm infections. The dataset contains images of 8 main types of disorders affecting date palm leaves, three of which are physiological, four are fungal, and one is caused by pests. Specifically, the collected samples exhibit symptoms and signs of potassium deficiency, manganese deficiency, magnesium deficiency, black scorch, leaf spots, fusarium wilt, rachis blight, and parlatoria blanchardi. Moreover, the dataset includes a baseline of healthy palm leaves. In total, 608 raw images were captured over a period of three months, coinciding with the autumn and spring seasons, from 10 real date farms in the Madinah region of Saudi Arabia. The images were captured using smartphones and an SLR camera, focusing mainly on inflected leaves and leaflets. Date palm fruits, trunks, and roots are beyond the focus of this dataset. The infected leaf images were filtered, cropped, augmented, and categorized into their disease classes. The resulting processed dataset comprises 3089 images. Our proposed dataset can be used to train classification deep learning models of infected date palm leaves, thus enabling the early prevention of palm tree-related diseases.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.