{"title":"用有限振幅法计算 QRPA 电平密度","authors":"A. Bjelčić, N. Schunck","doi":"10.1016/j.cpc.2024.109387","DOIUrl":null,"url":null,"abstract":"<div><div>We describe a new algorithm to calculate the vibrational nuclear level density of an atomic nucleus. Fictitious perturbation operators that probe the response of the system are generated by drawing their matrix elements from some probability distribution function. We use the Finite Amplitude Method to explicitly compute the response for each such sample. With the help of the Kernel Polynomial Method, we build an estimator of the vibrational level density and provide the upper bound of the relative error in the limit of infinitely many random samples. The new algorithm can give accurate estimates of the vibrational level density. Since it is based on drawing multiple samples of perturbation operators, its computational implementation is naturally parallel and scales like the number of available processing units.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"306 ","pages":"Article 109387"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the QRPA level density with the finite amplitude method\",\"authors\":\"A. Bjelčić, N. Schunck\",\"doi\":\"10.1016/j.cpc.2024.109387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We describe a new algorithm to calculate the vibrational nuclear level density of an atomic nucleus. Fictitious perturbation operators that probe the response of the system are generated by drawing their matrix elements from some probability distribution function. We use the Finite Amplitude Method to explicitly compute the response for each such sample. With the help of the Kernel Polynomial Method, we build an estimator of the vibrational level density and provide the upper bound of the relative error in the limit of infinitely many random samples. The new algorithm can give accurate estimates of the vibrational level density. Since it is based on drawing multiple samples of perturbation operators, its computational implementation is naturally parallel and scales like the number of available processing units.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"306 \",\"pages\":\"Article 109387\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003102\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003102","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computing the QRPA level density with the finite amplitude method
We describe a new algorithm to calculate the vibrational nuclear level density of an atomic nucleus. Fictitious perturbation operators that probe the response of the system are generated by drawing their matrix elements from some probability distribution function. We use the Finite Amplitude Method to explicitly compute the response for each such sample. With the help of the Kernel Polynomial Method, we build an estimator of the vibrational level density and provide the upper bound of the relative error in the limit of infinitely many random samples. The new algorithm can give accurate estimates of the vibrational level density. Since it is based on drawing multiple samples of perturbation operators, its computational implementation is naturally parallel and scales like the number of available processing units.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.