DetSegDiff:利用边缘增强扩散网络在口内超声中联合检测和分割牙周地标

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-09-24 DOI:10.1016/j.compbiomed.2024.109174
{"title":"DetSegDiff:利用边缘增强扩散网络在口内超声中联合检测和分割牙周地标","authors":"","doi":"10.1016/j.compbiomed.2024.109174","DOIUrl":null,"url":null,"abstract":"<div><div>Individuals with malocclusion require an orthodontic diagnosis and treatment plan based on the severity of their condition. Assessing and monitoring changes in periodontal structures before, during, and after orthodontic procedures is crucial, and intraoral ultrasound (US) imaging has been shown a promising diagnostic tool in imaging periodontium. However, accurately delineating and analyzing periodontal structures in US videos is a challenging task for clinicians, as it is time-consuming and subject to interpretation errors. This paper introduces DetSegDiff, an edge-enhanced diffusion-based network developed to simultaneously detect the cementoenamel junction (CEJ) and segment alveolar bone structure in intraoral US videos. An edge feature encoder is designed to enhance edge and texture information for precise delineation of periodontal structures. Additionally, we employed the spatial squeeze-attention module (SSAM) to extract more representative features to perform both detection and segmentation tasks at global and local levels. This study used 169 videos from 17 orthodontic patients for training purposes and was subsequently tested on 41 videos from 4 additional patients. The proposed method achieved a mean distance difference of 0.17 ± 0.19 mm for the CEJ and an average Dice score of 90.1% for alveolar bone structure. As there is a lack of multi-task benchmark networks, thorough experiments were undertaken to assess and benchmark the proposed method against state-of-the-art (SOTA) detection and segmentation individual networks. The experimental results demonstrated that DetSegDiff outperformed SOTA approaches, confirming the feasibility of using automated diagnostic systems for orthodontists.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DetSegDiff: A joint periodontal landmark detection and segmentation in intraoral ultrasound using edge-enhanced diffusion-based network\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiomed.2024.109174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Individuals with malocclusion require an orthodontic diagnosis and treatment plan based on the severity of their condition. Assessing and monitoring changes in periodontal structures before, during, and after orthodontic procedures is crucial, and intraoral ultrasound (US) imaging has been shown a promising diagnostic tool in imaging periodontium. However, accurately delineating and analyzing periodontal structures in US videos is a challenging task for clinicians, as it is time-consuming and subject to interpretation errors. This paper introduces DetSegDiff, an edge-enhanced diffusion-based network developed to simultaneously detect the cementoenamel junction (CEJ) and segment alveolar bone structure in intraoral US videos. An edge feature encoder is designed to enhance edge and texture information for precise delineation of periodontal structures. Additionally, we employed the spatial squeeze-attention module (SSAM) to extract more representative features to perform both detection and segmentation tasks at global and local levels. This study used 169 videos from 17 orthodontic patients for training purposes and was subsequently tested on 41 videos from 4 additional patients. The proposed method achieved a mean distance difference of 0.17 ± 0.19 mm for the CEJ and an average Dice score of 90.1% for alveolar bone structure. As there is a lack of multi-task benchmark networks, thorough experiments were undertaken to assess and benchmark the proposed method against state-of-the-art (SOTA) detection and segmentation individual networks. The experimental results demonstrated that DetSegDiff outperformed SOTA approaches, confirming the feasibility of using automated diagnostic systems for orthodontists.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524012599\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

错颌畸形患者需要根据病情的严重程度进行正畸诊断并制定治疗计划。在正畸治疗之前、期间和之后,评估和监测牙周结构的变化至关重要,而口内超声波(US)成像已被证明是牙周成像中一种很有前途的诊断工具。然而,对于临床医生来说,在 US 视频中准确划分和分析牙周结构是一项极具挑战性的任务,因为它既耗时又容易出现解读错误。本文介绍的 DetSegDiff 是一种基于边缘增强扩散的网络,可同时检测口内 US 视频中的牙釉质连接点(CEJ)和牙槽骨结构。边缘特征编码器旨在增强边缘和纹理信息,以精确划分牙周结构。此外,我们还采用了空间挤压注意模块(SSAM)来提取更具代表性的特征,以便在全局和局部层面执行检测和分割任务。这项研究使用了 17 名正畸患者的 169 个视频作为训练,随后又对另外 4 名患者的 41 个视频进行了测试。所提出的方法在 CEJ 方面的平均距离差为 0.17 ± 0.19 mm,在牙槽骨结构方面的平均 Dice 分数为 90.1%。由于缺乏多任务基准网络,我们进行了全面的实验,以评估所提出的方法,并将其与最先进的(SOTA)检测和分割单个网络进行比较。实验结果表明,DetSegDiff 的表现优于 SOTA 方法,证实了为正畸医师使用自动诊断系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DetSegDiff: A joint periodontal landmark detection and segmentation in intraoral ultrasound using edge-enhanced diffusion-based network
Individuals with malocclusion require an orthodontic diagnosis and treatment plan based on the severity of their condition. Assessing and monitoring changes in periodontal structures before, during, and after orthodontic procedures is crucial, and intraoral ultrasound (US) imaging has been shown a promising diagnostic tool in imaging periodontium. However, accurately delineating and analyzing periodontal structures in US videos is a challenging task for clinicians, as it is time-consuming and subject to interpretation errors. This paper introduces DetSegDiff, an edge-enhanced diffusion-based network developed to simultaneously detect the cementoenamel junction (CEJ) and segment alveolar bone structure in intraoral US videos. An edge feature encoder is designed to enhance edge and texture information for precise delineation of periodontal structures. Additionally, we employed the spatial squeeze-attention module (SSAM) to extract more representative features to perform both detection and segmentation tasks at global and local levels. This study used 169 videos from 17 orthodontic patients for training purposes and was subsequently tested on 41 videos from 4 additional patients. The proposed method achieved a mean distance difference of 0.17 ± 0.19 mm for the CEJ and an average Dice score of 90.1% for alveolar bone structure. As there is a lack of multi-task benchmark networks, thorough experiments were undertaken to assess and benchmark the proposed method against state-of-the-art (SOTA) detection and segmentation individual networks. The experimental results demonstrated that DetSegDiff outperformed SOTA approaches, confirming the feasibility of using automated diagnostic systems for orthodontists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Lightweight medical image segmentation network with multi-scale feature-guided fusion. Shuffled ECA-Net for stress detection from multimodal wearable sensor data. Stacking based ensemble learning framework for identification of nitrotyrosine sites. Two-stage deep learning framework for occlusal crown depth image generation. A joint analysis proposal of nonlinear longitudinal and time-to-event right-, interval-censored data for modeling pregnancy miscarriage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1