{"title":"通过学习提升稳定非线性系统的性能","authors":"Luca Furieri;Clara Lucía Galimberti;Giancarlo Ferrari-Trecate","doi":"10.1109/OJCSYS.2024.3441768","DOIUrl":null,"url":null,"abstract":"The growing scale and complexity of safety-critical control systems underscore the need to evolve current control architectures aiming for the unparalleled performances achievable through state-of-the-art optimization and machine learning algorithms. However, maintaining closed-loop stability while boosting the performance of nonlinear control systems using data-driven and deep-learning approaches stands as an important unsolved challenge. In this paper, we tackle the performance-boosting problem with closed-loop stability guarantees. Specifically, we establish a synergy between the Internal Model Control (IMC) principle for nonlinear systems and state-of-the-art unconstrained optimization approaches for learning stable dynamics. Our methods enable learning over specific classes of deep neural network performance-boosting controllers for stable nonlinear systems; crucially, we guarantee \n<inline-formula><tex-math>$\\mathcal {L}_{p}$</tex-math></inline-formula>\n closed-loop stability even if optimization is halted prematurely. When the ground-truth dynamics are uncertain, we learn over robustly stabilizing control policies. Our robustness result is tight, in the sense that all stabilizing policies are recovered as the \n<inline-formula><tex-math>$\\mathcal {L}_{p}$</tex-math></inline-formula>\n -gain of the model mismatch operator is reduced to zero. We discuss the implementation details of the proposed control schemes, including distributed ones, along with the corresponding optimization procedures, demonstrating the potential of freely shaping the cost functions through several numerical experiments.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"342-357"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633771","citationCount":"0","resultStr":"{\"title\":\"Learning to Boost the Performance of Stable Nonlinear Systems\",\"authors\":\"Luca Furieri;Clara Lucía Galimberti;Giancarlo Ferrari-Trecate\",\"doi\":\"10.1109/OJCSYS.2024.3441768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing scale and complexity of safety-critical control systems underscore the need to evolve current control architectures aiming for the unparalleled performances achievable through state-of-the-art optimization and machine learning algorithms. However, maintaining closed-loop stability while boosting the performance of nonlinear control systems using data-driven and deep-learning approaches stands as an important unsolved challenge. In this paper, we tackle the performance-boosting problem with closed-loop stability guarantees. Specifically, we establish a synergy between the Internal Model Control (IMC) principle for nonlinear systems and state-of-the-art unconstrained optimization approaches for learning stable dynamics. Our methods enable learning over specific classes of deep neural network performance-boosting controllers for stable nonlinear systems; crucially, we guarantee \\n<inline-formula><tex-math>$\\\\mathcal {L}_{p}$</tex-math></inline-formula>\\n closed-loop stability even if optimization is halted prematurely. When the ground-truth dynamics are uncertain, we learn over robustly stabilizing control policies. Our robustness result is tight, in the sense that all stabilizing policies are recovered as the \\n<inline-formula><tex-math>$\\\\mathcal {L}_{p}$</tex-math></inline-formula>\\n -gain of the model mismatch operator is reduced to zero. We discuss the implementation details of the proposed control schemes, including distributed ones, along with the corresponding optimization procedures, demonstrating the potential of freely shaping the cost functions through several numerical experiments.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"342-357\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633771\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633771/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10633771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to Boost the Performance of Stable Nonlinear Systems
The growing scale and complexity of safety-critical control systems underscore the need to evolve current control architectures aiming for the unparalleled performances achievable through state-of-the-art optimization and machine learning algorithms. However, maintaining closed-loop stability while boosting the performance of nonlinear control systems using data-driven and deep-learning approaches stands as an important unsolved challenge. In this paper, we tackle the performance-boosting problem with closed-loop stability guarantees. Specifically, we establish a synergy between the Internal Model Control (IMC) principle for nonlinear systems and state-of-the-art unconstrained optimization approaches for learning stable dynamics. Our methods enable learning over specific classes of deep neural network performance-boosting controllers for stable nonlinear systems; crucially, we guarantee
$\mathcal {L}_{p}$
closed-loop stability even if optimization is halted prematurely. When the ground-truth dynamics are uncertain, we learn over robustly stabilizing control policies. Our robustness result is tight, in the sense that all stabilizing policies are recovered as the
$\mathcal {L}_{p}$
-gain of the model mismatch operator is reduced to zero. We discuss the implementation details of the proposed control schemes, including distributed ones, along with the corresponding optimization procedures, demonstrating the potential of freely shaping the cost functions through several numerical experiments.