首次展示体内 PDE11A4 靶点参与治疗老年性记忆障碍的潜力

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2024-09-25 DOI:10.1021/acs.jmedchem.4c01794
Shams ul Mahmood, Jeremy Eberhard, Charles S. Hoffman, Dennis Colussi, John Gordon, Wayne Childers, Elvis Amurrio, Janvi Patel, Michy P. Kelly, David P. Rotella
{"title":"首次展示体内 PDE11A4 靶点参与治疗老年性记忆障碍的潜力","authors":"Shams ul Mahmood, Jeremy Eberhard, Charles S. Hoffman, Dennis Colussi, John Gordon, Wayne Childers, Elvis Amurrio, Janvi Patel, Michy P. Kelly, David P. Rotella","doi":"10.1021/acs.jmedchem.4c01794","DOIUrl":null,"url":null,"abstract":"PDE11A4 is a target of interest for the treatment of age-related memory disorders. A previous report from our laboratories described an amide series of potent, selective PDE11A4 inhibitors that was metabolically unstable. Investigation of heterocyclic amide isosteres for the labile amide moiety revealed distinct structure–activity relationships and identified several compounds with potency comparable to the amide series. This manuscript describes the characterization of structure–activity and structure–property relationships in this set, leading to the identification of an orally bioavailable, brain-penetrant, selective and potent PDE11A4 inhibitor. Target engagement experiments demonstrated PDE11A4 inhibition in the hypothalamus of mice that was absent in PDE11A4 knock out animals.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Demonstration of In Vivo PDE11A4 Target Engagement for Potential Treatment of Age-Related Memory Disorders\",\"authors\":\"Shams ul Mahmood, Jeremy Eberhard, Charles S. Hoffman, Dennis Colussi, John Gordon, Wayne Childers, Elvis Amurrio, Janvi Patel, Michy P. Kelly, David P. Rotella\",\"doi\":\"10.1021/acs.jmedchem.4c01794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PDE11A4 is a target of interest for the treatment of age-related memory disorders. A previous report from our laboratories described an amide series of potent, selective PDE11A4 inhibitors that was metabolically unstable. Investigation of heterocyclic amide isosteres for the labile amide moiety revealed distinct structure–activity relationships and identified several compounds with potency comparable to the amide series. This manuscript describes the characterization of structure–activity and structure–property relationships in this set, leading to the identification of an orally bioavailable, brain-penetrant, selective and potent PDE11A4 inhibitor. Target engagement experiments demonstrated PDE11A4 inhibition in the hypothalamus of mice that was absent in PDE11A4 knock out animals.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01794\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01794","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

PDE11A4 是治疗与年龄有关的记忆障碍的靶点。我们实验室之前的一份报告描述了一种代谢不稳定的强效、选择性 PDE11A4 抑制剂酰胺系列。对易变酰胺分子的杂环酰胺异构体的研究揭示了独特的结构-活性关系,并发现了几种效力与酰胺系列相当的化合物。本手稿描述了这组化合物的结构-活性和结构-性质关系特征,从而鉴定出了一种口服生物可用性、脑穿透性、选择性和强效 PDE11A4 抑制剂。靶点参与实验证明了 PDE11A4 对小鼠下丘脑的抑制作用,而 PDE11A4 基因敲除动物则没有这种抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Demonstration of In Vivo PDE11A4 Target Engagement for Potential Treatment of Age-Related Memory Disorders
PDE11A4 is a target of interest for the treatment of age-related memory disorders. A previous report from our laboratories described an amide series of potent, selective PDE11A4 inhibitors that was metabolically unstable. Investigation of heterocyclic amide isosteres for the labile amide moiety revealed distinct structure–activity relationships and identified several compounds with potency comparable to the amide series. This manuscript describes the characterization of structure–activity and structure–property relationships in this set, leading to the identification of an orally bioavailable, brain-penetrant, selective and potent PDE11A4 inhibitor. Target engagement experiments demonstrated PDE11A4 inhibition in the hypothalamus of mice that was absent in PDE11A4 knock out animals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Discovery of BAY-405: An Azaindole-Based MAP4K1 Inhibitor for the Enhancement of T-Cell Immunity against Cancer Issue Editorial Masthead Issue Publication Information Discovery and Optimization of a Series of Vinyl Sulfoximine-Based Analogues as Potent Nrf2 Activators for the Treatment of Multiple Sclerosis Structure–Activity Relationship Studies Leading to the Discovery of Highly Water-Soluble and Biocompatible Acyclic Cucurbit[n]uril FY-3451 as a Universal Antagonist That Rapidly Reverses Neuromuscular Blocking Agents In Vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1