通过改进的 Q$ 函数实现异构多代理系统同步的强化学习

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-09-24 DOI:10.1109/TCYB.2024.3440333
Jinna Li;Lin Yuan;Weiran Cheng;Tianyou Chai;Frank L. Lewis
{"title":"通过改进的 Q$ 函数实现异构多代理系统同步的强化学习","authors":"Jinna Li;Lin Yuan;Weiran Cheng;Tianyou Chai;Frank L. Lewis","doi":"10.1109/TCYB.2024.3440333","DOIUrl":null,"url":null,"abstract":"This article dedicates to investigating a methodology for enhancing adaptability to environmental changes of reinforcement learning (RL) techniques with data efficiency, by which a joint control protocol is learned using only data for multiagent systems (MASs). Thus, all followers are able to synchronize themselves with the leader and minimize their individual performance. To this end, an optimal synchronization problem of heterogeneous MASs is first formulated, and then an arbitration RL mechanism is developed for well addressing key challenges faced by the current RL techniques, that is, insufficient data and environmental changes. In the developed mechanism, an improved Q-function with an arbitration factor is designed for accommodating the fact that control protocols tend to be made by historic experiences and instinctive decision-making, such that the degree of control over agents’ behaviors can be adaptively allocated by on-policy and off-policy RL techniques for the optimal multiagent synchronization problem. Finally, an arbitration RL algorithm with critic-only neural networks is proposed, and theoretical analysis and proofs of synchronization and performance optimality are provided. Simulation results verify the effectiveness of the proposed method.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"54 11","pages":"6545-6558"},"PeriodicalIF":9.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning for Synchronization of Heterogeneous Multiagent Systems by Improved Q-Functions\",\"authors\":\"Jinna Li;Lin Yuan;Weiran Cheng;Tianyou Chai;Frank L. Lewis\",\"doi\":\"10.1109/TCYB.2024.3440333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article dedicates to investigating a methodology for enhancing adaptability to environmental changes of reinforcement learning (RL) techniques with data efficiency, by which a joint control protocol is learned using only data for multiagent systems (MASs). Thus, all followers are able to synchronize themselves with the leader and minimize their individual performance. To this end, an optimal synchronization problem of heterogeneous MASs is first formulated, and then an arbitration RL mechanism is developed for well addressing key challenges faced by the current RL techniques, that is, insufficient data and environmental changes. In the developed mechanism, an improved Q-function with an arbitration factor is designed for accommodating the fact that control protocols tend to be made by historic experiences and instinctive decision-making, such that the degree of control over agents’ behaviors can be adaptively allocated by on-policy and off-policy RL techniques for the optimal multiagent synchronization problem. Finally, an arbitration RL algorithm with critic-only neural networks is proposed, and theoretical analysis and proofs of synchronization and performance optimality are provided. Simulation results verify the effectiveness of the proposed method.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"54 11\",\"pages\":\"6545-6558\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10690164/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10690164/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究一种利用数据效率提高强化学习(RL)技术对环境变化适应性的方法,通过这种方法,多代理系统(MAS)只需使用数据就能学习联合控制协议。这样,所有追随者都能与领导者同步,并最大限度地降低各自的绩效。为此,首先提出了异构 MAS 的最优同步问题,然后开发了一种仲裁 RL 机制,以很好地解决当前 RL 技术面临的主要挑战,即数据不足和环境变化。在所开发的机制中,设计了一种带有仲裁因子的改进 Q 函数,以适应控制协议往往由历史经验和本能决策所决定的事实,这样就可以通过最优多代理同步问题的策略上和策略下 RL 技术自适应地分配代理行为的控制程度。最后,提出了一种使用纯批判神经网络的仲裁 RL 算法,并提供了同步和性能优化的理论分析和证明。仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement Learning for Synchronization of Heterogeneous Multiagent Systems by Improved Q-Functions
This article dedicates to investigating a methodology for enhancing adaptability to environmental changes of reinforcement learning (RL) techniques with data efficiency, by which a joint control protocol is learned using only data for multiagent systems (MASs). Thus, all followers are able to synchronize themselves with the leader and minimize their individual performance. To this end, an optimal synchronization problem of heterogeneous MASs is first formulated, and then an arbitration RL mechanism is developed for well addressing key challenges faced by the current RL techniques, that is, insufficient data and environmental changes. In the developed mechanism, an improved Q-function with an arbitration factor is designed for accommodating the fact that control protocols tend to be made by historic experiences and instinctive decision-making, such that the degree of control over agents’ behaviors can be adaptively allocated by on-policy and off-policy RL techniques for the optimal multiagent synchronization problem. Finally, an arbitration RL algorithm with critic-only neural networks is proposed, and theoretical analysis and proofs of synchronization and performance optimality are provided. Simulation results verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
An Efficient Dynamic Resource Allocation Framework for Evolutionary Bilevel Optimization Angle Rigidity-Based Communication-Free Adaptive Formation Control for Nonlinear Multiagent Systems With Prescribed Performance T3DNet: Compressing Point Cloud Models for Lightweight 3-D Recognition Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1