亚麻-玻璃-环氧混合复合材料在水老化条件下的冲击疲劳损伤研究

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2024-09-24 DOI:10.1177/10567895241279842
A Goumghar, K Azouaoui, M Assarar, W Zouari, S Mouhoubi, R Ayad, A El Mahi
{"title":"亚麻-玻璃-环氧混合复合材料在水老化条件下的冲击疲劳损伤研究","authors":"A Goumghar, K Azouaoui, M Assarar, W Zouari, S Mouhoubi, R Ayad, A El Mahi","doi":"10.1177/10567895241279842","DOIUrl":null,"url":null,"abstract":"The aim of this study is to investigate the fatigue behaviour of hybrid flax-glass/epoxy composites under repeated impact loading subsequent to water ageing. Different plates of these composite materials were fabricated using the vacuum infusion technique. Five stacking sequences were considered: [F<jats:sub>8</jats:sub>], [G/F<jats:sub>3</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>2</jats:sub>/F<jats:sub>2</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>3</jats:sub>/F]<jats:sub>S</jats:sub>, and [G<jats:sub>8</jats:sub>], where F and G stand for flax/epoxy and glass/epoxy plies, respectively. Water ageing was conducted by immersing the composite specimens in tap water at room temperature for various durations, and until saturation was reached. Fatigue impact tests were carried out using three impact energies: 3, 4, and 5 J. An advanced high-resolution camera was used to monitor the evolution of damage mechanisms occurring on the non-impacted surfaces, while a laser thermometer was considered to track the temperature variations within each composite specimen. The obtained results show that flax-glass hybridization reduces the mass of absorbed water in flax/epoxy composite by up to 70%. Furthermore, there is a more pronounced decrease in longitudinal modulus and maximum stress in aged composites, with reductions of up to 70% compared to unaged ones. Additionally, visible damage occurs even at low energy levels, manifesting from the initial impacts in both aged and unaged composite laminates. Moreover, a correlation between the number of impacts to failure and the cumulative energy is revealed. Ultimately, water aging reduces the strength of the studied composite laminates and their resistance to impact fatigue. Furthermore, the hybrid laminates with high proportion of flax layers are particularly susceptible to water ageing effects.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing\",\"authors\":\"A Goumghar, K Azouaoui, M Assarar, W Zouari, S Mouhoubi, R Ayad, A El Mahi\",\"doi\":\"10.1177/10567895241279842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to investigate the fatigue behaviour of hybrid flax-glass/epoxy composites under repeated impact loading subsequent to water ageing. Different plates of these composite materials were fabricated using the vacuum infusion technique. Five stacking sequences were considered: [F<jats:sub>8</jats:sub>], [G/F<jats:sub>3</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>2</jats:sub>/F<jats:sub>2</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>3</jats:sub>/F]<jats:sub>S</jats:sub>, and [G<jats:sub>8</jats:sub>], where F and G stand for flax/epoxy and glass/epoxy plies, respectively. Water ageing was conducted by immersing the composite specimens in tap water at room temperature for various durations, and until saturation was reached. Fatigue impact tests were carried out using three impact energies: 3, 4, and 5 J. An advanced high-resolution camera was used to monitor the evolution of damage mechanisms occurring on the non-impacted surfaces, while a laser thermometer was considered to track the temperature variations within each composite specimen. The obtained results show that flax-glass hybridization reduces the mass of absorbed water in flax/epoxy composite by up to 70%. Furthermore, there is a more pronounced decrease in longitudinal modulus and maximum stress in aged composites, with reductions of up to 70% compared to unaged ones. Additionally, visible damage occurs even at low energy levels, manifesting from the initial impacts in both aged and unaged composite laminates. Moreover, a correlation between the number of impacts to failure and the cumulative energy is revealed. Ultimately, water aging reduces the strength of the studied composite laminates and their resistance to impact fatigue. Furthermore, the hybrid laminates with high proportion of flax layers are particularly susceptible to water ageing effects.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241279842\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241279842","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是调查亚麻-玻璃-环氧混合复合材料在水老化后反复冲击加载下的疲劳行为。采用真空灌注技术制造了这些复合材料的不同板材。考虑了五种堆叠序列:[F8]、[G/F3]S、[G2/F2]S、[G3/F]S 和 [G8],其中 F 和 G 分别代表亚麻/环氧层和玻璃/环氧层。水老化是将复合材料试样浸泡在室温下的自来水中,浸泡时间长短不一,直至达到饱和状态。疲劳冲击试验采用三种冲击能量进行:先进的高分辨率照相机用于监控非撞击表面的损伤机制演变,而激光温度计则用于跟踪每个复合材料试样内部的温度变化。研究结果表明,亚麻-玻璃杂化使亚麻/环氧复合材料的吸水率降低了 70%。此外,在老化的复合材料中,纵向模量和最大应力的下降更为明显,与未老化的复合材料相比,降幅高达 70%。此外,即使在低能量水平下,老化和未老化的复合材料层压板也会从最初的冲击开始出现明显的损坏。此外,还发现了冲击到破坏的次数与累积能量之间的相关性。最终,水老化降低了所研究的复合材料层压板的强度及其抗冲击疲劳的能力。此外,亚麻层比例较高的混合层压板尤其容易受到水老化效应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing
The aim of this study is to investigate the fatigue behaviour of hybrid flax-glass/epoxy composites under repeated impact loading subsequent to water ageing. Different plates of these composite materials were fabricated using the vacuum infusion technique. Five stacking sequences were considered: [F8], [G/F3]S, [G2/F2]S, [G3/F]S, and [G8], where F and G stand for flax/epoxy and glass/epoxy plies, respectively. Water ageing was conducted by immersing the composite specimens in tap water at room temperature for various durations, and until saturation was reached. Fatigue impact tests were carried out using three impact energies: 3, 4, and 5 J. An advanced high-resolution camera was used to monitor the evolution of damage mechanisms occurring on the non-impacted surfaces, while a laser thermometer was considered to track the temperature variations within each composite specimen. The obtained results show that flax-glass hybridization reduces the mass of absorbed water in flax/epoxy composite by up to 70%. Furthermore, there is a more pronounced decrease in longitudinal modulus and maximum stress in aged composites, with reductions of up to 70% compared to unaged ones. Additionally, visible damage occurs even at low energy levels, manifesting from the initial impacts in both aged and unaged composite laminates. Moreover, a correlation between the number of impacts to failure and the cumulative energy is revealed. Ultimately, water aging reduces the strength of the studied composite laminates and their resistance to impact fatigue. Furthermore, the hybrid laminates with high proportion of flax layers are particularly susceptible to water ageing effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Experimental study on the mechanical properties of red sandstone with fractures under different loading rates Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing A review of multiaxial low-cycle fatigue criteria for life prediction of metals Damage and fracture studies of continuous flax fiber-reinforced composites 3D printed by in-nozzle impregnation additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1