Michael Thoenen, Nicholas F. Scherschel, Davin G. Piercey
{"title":"经济、一步法合成呋喃香烷二甲酸二乙酯","authors":"Michael Thoenen, Nicholas F. Scherschel, Davin G. Piercey","doi":"10.1021/acs.oprd.4c00191","DOIUrl":null,"url":null,"abstract":"Diethyl furoxan dicarboxylate (DFD) is a starting material for fields as diverse as drug discovery, energetics, and any application where a furoxan or furazan may be desired. As with many disubstituted furoxans, they are synthesized via the dimerization of the appropriate nitrile oxide. Past procedures to form DFD involve low-yield destructive nitrations, multiple steps, halogenated solvents, or heavy or precious metals. Although these methods are functional enough for lab-scale preparations of DFD, they do not hold up well for economical scale-up. Our reported procedure improves the synthesis of DFD such that it is available from economical and commercially available starting materials in a single-step, one-pot, high-yield (98.5%) synthesis of material with a trivial workup in high purity (98.2% by <sup>1</sup>H quantitative NMR against a 2,4,6-trimethoxy-1,3,5-triazene standard). This improved procedure requires no organic solvents or heavy metals and is the most scalable preparation for this material to date.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic, One-Pot Synthesis of Diethyl Furoxan Dicarboxylate\",\"authors\":\"Michael Thoenen, Nicholas F. Scherschel, Davin G. Piercey\",\"doi\":\"10.1021/acs.oprd.4c00191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diethyl furoxan dicarboxylate (DFD) is a starting material for fields as diverse as drug discovery, energetics, and any application where a furoxan or furazan may be desired. As with many disubstituted furoxans, they are synthesized via the dimerization of the appropriate nitrile oxide. Past procedures to form DFD involve low-yield destructive nitrations, multiple steps, halogenated solvents, or heavy or precious metals. Although these methods are functional enough for lab-scale preparations of DFD, they do not hold up well for economical scale-up. Our reported procedure improves the synthesis of DFD such that it is available from economical and commercially available starting materials in a single-step, one-pot, high-yield (98.5%) synthesis of material with a trivial workup in high purity (98.2% by <sup>1</sup>H quantitative NMR against a 2,4,6-trimethoxy-1,3,5-triazene standard). This improved procedure requires no organic solvents or heavy metals and is the most scalable preparation for this material to date.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00191\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00191","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Economic, One-Pot Synthesis of Diethyl Furoxan Dicarboxylate
Diethyl furoxan dicarboxylate (DFD) is a starting material for fields as diverse as drug discovery, energetics, and any application where a furoxan or furazan may be desired. As with many disubstituted furoxans, they are synthesized via the dimerization of the appropriate nitrile oxide. Past procedures to form DFD involve low-yield destructive nitrations, multiple steps, halogenated solvents, or heavy or precious metals. Although these methods are functional enough for lab-scale preparations of DFD, they do not hold up well for economical scale-up. Our reported procedure improves the synthesis of DFD such that it is available from economical and commercially available starting materials in a single-step, one-pot, high-yield (98.5%) synthesis of material with a trivial workup in high purity (98.2% by 1H quantitative NMR against a 2,4,6-trimethoxy-1,3,5-triazene standard). This improved procedure requires no organic solvents or heavy metals and is the most scalable preparation for this material to date.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.