Wei-Jun Li , Cui-Kang Xu , Song-Quan Ong , Abdul Hafiz Ab Majid , Jian-Guo Wang , Xiao-Zhen Li
{"title":"Zeugodacus tau 幼虫(双翅目:头螨科)三个发育阶段转录组的比较分析","authors":"Wei-Jun Li , Cui-Kang Xu , Song-Quan Ong , Abdul Hafiz Ab Majid , Jian-Guo Wang , Xiao-Zhen Li","doi":"10.1016/j.cbd.2024.101333","DOIUrl":null,"url":null,"abstract":"<div><div>Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning <em>Zeugodacus tau</em> (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of <em>Z. tau</em> larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of <em>Z. tau</em> larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes <em>Cyp4ac1_1</em>, <em>Cyp4aa1</em>, <em>Cyp313a4_3</em> were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of <em>Z. tau</em> larvae, which provided valuable information for further functional genomic research.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analyses of the transcriptome among three development stages of Zeugodacus tau larvae (Diptera: Tephritidae)\",\"authors\":\"Wei-Jun Li , Cui-Kang Xu , Song-Quan Ong , Abdul Hafiz Ab Majid , Jian-Guo Wang , Xiao-Zhen Li\",\"doi\":\"10.1016/j.cbd.2024.101333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning <em>Zeugodacus tau</em> (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of <em>Z. tau</em> larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of <em>Z. tau</em> larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes <em>Cyp4ac1_1</em>, <em>Cyp4aa1</em>, <em>Cyp313a4_3</em> were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of <em>Z. tau</em> larvae, which provided valuable information for further functional genomic research.</div></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001461\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative analyses of the transcriptome among three development stages of Zeugodacus tau larvae (Diptera: Tephritidae)
Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning Zeugodacus tau (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of Z. tau larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of Z. tau larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes Cyp4ac1_1, Cyp4aa1, Cyp313a4_3 were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of Z. tau larvae, which provided valuable information for further functional genomic research.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.