从无人机多光谱图像量化冬小麦生化性状的高效物理信息迁移学习

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-09-22 DOI:10.1016/j.atech.2024.100581
{"title":"从无人机多光谱图像量化冬小麦生化性状的高效物理信息迁移学习","authors":"","doi":"10.1016/j.atech.2024.100581","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient estimation of biochemical traits, including leaf index area (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC), is crucial for crop growth monitoring in agricultural management. Recent advancements in unmanned aerial vehicle (UAV) multispectral remote sensing have enabled fast and cost-effective measurements of these traits. However, traditional statistical regression models trained on specific datasets lack scalability and transferability across practical field conditions without retraining. This study proposed an efficient physics-informed transfer learning model (PITL) for winter wheat biochemical traits estimation from UAV multispectral data. The PITL integrates the strengths of physical radiative transfer simulations and deep neural network architectures through transfer learning to improve the estimation of biochemical traits from UAV multispectral data. The PITL was tested with convolutional neural network (CNN), deep neural network (DNN), and long short-term memory (LSTM) architectures. Results indicated that PITL<sub>DNN</sub> had better accuracy than PITL<sub>CNN</sub> and PITL<sub>LSTM</sub> models in predicting LAI (R<sup>2</sup>=0.94, RMSE = 0.32 m<sup>2</sup>/m<sup>2</sup>), LCC (R<sup>2</sup>=0.81, RMSE = 5.20 μg/cm<sup>2</sup>) and CCC (R<sup>2</sup>=0.928, RMSE = 0.2 g/m<sup>2</sup>). Moreover, PITL<sub>DNN</sub> demonstrated higher capability in computational efficiency, making it suitable for processing large volumes of UAV multispectral data in crop growth monitoring applications. Furthermore, PITL's integration of radiative transfer knowledge with labeled field data yielded higher predictive accuracy compared to physically-based inversion model, pure data-driven deep neural network approaches, and hybrid models. This study highlighted the performance of PITL<sub>DNN</sub> in accurately and efficiently quantifing biochemical traits from UAV multispectral data, thereby providing timely and accurate information for guiding crop growth monitoring applications.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient physics-informed transfer learning to quantify biochemical traits of winter wheat from UAV multispectral imagery\",\"authors\":\"\",\"doi\":\"10.1016/j.atech.2024.100581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and efficient estimation of biochemical traits, including leaf index area (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC), is crucial for crop growth monitoring in agricultural management. Recent advancements in unmanned aerial vehicle (UAV) multispectral remote sensing have enabled fast and cost-effective measurements of these traits. However, traditional statistical regression models trained on specific datasets lack scalability and transferability across practical field conditions without retraining. This study proposed an efficient physics-informed transfer learning model (PITL) for winter wheat biochemical traits estimation from UAV multispectral data. The PITL integrates the strengths of physical radiative transfer simulations and deep neural network architectures through transfer learning to improve the estimation of biochemical traits from UAV multispectral data. The PITL was tested with convolutional neural network (CNN), deep neural network (DNN), and long short-term memory (LSTM) architectures. Results indicated that PITL<sub>DNN</sub> had better accuracy than PITL<sub>CNN</sub> and PITL<sub>LSTM</sub> models in predicting LAI (R<sup>2</sup>=0.94, RMSE = 0.32 m<sup>2</sup>/m<sup>2</sup>), LCC (R<sup>2</sup>=0.81, RMSE = 5.20 μg/cm<sup>2</sup>) and CCC (R<sup>2</sup>=0.928, RMSE = 0.2 g/m<sup>2</sup>). Moreover, PITL<sub>DNN</sub> demonstrated higher capability in computational efficiency, making it suitable for processing large volumes of UAV multispectral data in crop growth monitoring applications. Furthermore, PITL's integration of radiative transfer knowledge with labeled field data yielded higher predictive accuracy compared to physically-based inversion model, pure data-driven deep neural network approaches, and hybrid models. This study highlighted the performance of PITL<sub>DNN</sub> in accurately and efficiently quantifing biochemical traits from UAV multispectral data, thereby providing timely and accurate information for guiding crop growth monitoring applications.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375524001862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524001862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

准确有效地估算生化性状,包括叶片指数面积(LAI)、叶片叶绿素含量(LCC)和冠层叶绿素含量(CCC),对于农业管理中的作物生长监测至关重要。无人飞行器(UAV)多光谱遥感技术的最新进展实现了对这些性状的快速、低成本测量。然而,在特定数据集上训练的传统统计回归模型缺乏可扩展性和无需重新训练即可在实际田间条件下转移的能力。本研究提出了一种高效的物理信息迁移学习模型(PITL),用于从无人机多光谱数据估算冬小麦生化性状。PITL 通过迁移学习,整合了物理辐射传递模拟和深度神经网络架构的优势,从而改进了从无人机多光谱数据中估算生化性状的方法。利用卷积神经网络(CNN)、深度神经网络(DNN)和长短期记忆(LSTM)架构对 PITL 进行了测试。结果表明,与 PITLCNN 和 PITLLSTM 模型相比,PITLDNN 在预测 LAI(R2=0.94,RMSE=0.32 m2/m2)、LCC(R2=0.81,RMSE=5.20 μg/cm2)和 CCC(R2=0.928,RMSE=0.2 g/m2)方面具有更好的准确性。此外,PITLDNN 在计算效率方面表现出更高的能力,使其适用于处理作物生长监测应用中的大量无人机多光谱数据。此外,与基于物理的反演模型、纯数据驱动的深度神经网络方法和混合模型相比,PITL 将辐射传递知识与标注的实地数据相结合,获得了更高的预测精度。本研究强调了 PITLDNN 在准确、高效地量化无人机多光谱数据中的生化性状方面的性能,从而为指导作物生长监测应用提供了及时、准确的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient physics-informed transfer learning to quantify biochemical traits of winter wheat from UAV multispectral imagery
Accurate and efficient estimation of biochemical traits, including leaf index area (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC), is crucial for crop growth monitoring in agricultural management. Recent advancements in unmanned aerial vehicle (UAV) multispectral remote sensing have enabled fast and cost-effective measurements of these traits. However, traditional statistical regression models trained on specific datasets lack scalability and transferability across practical field conditions without retraining. This study proposed an efficient physics-informed transfer learning model (PITL) for winter wheat biochemical traits estimation from UAV multispectral data. The PITL integrates the strengths of physical radiative transfer simulations and deep neural network architectures through transfer learning to improve the estimation of biochemical traits from UAV multispectral data. The PITL was tested with convolutional neural network (CNN), deep neural network (DNN), and long short-term memory (LSTM) architectures. Results indicated that PITLDNN had better accuracy than PITLCNN and PITLLSTM models in predicting LAI (R2=0.94, RMSE = 0.32 m2/m2), LCC (R2=0.81, RMSE = 5.20 μg/cm2) and CCC (R2=0.928, RMSE = 0.2 g/m2). Moreover, PITLDNN demonstrated higher capability in computational efficiency, making it suitable for processing large volumes of UAV multispectral data in crop growth monitoring applications. Furthermore, PITL's integration of radiative transfer knowledge with labeled field data yielded higher predictive accuracy compared to physically-based inversion model, pure data-driven deep neural network approaches, and hybrid models. This study highlighted the performance of PITLDNN in accurately and efficiently quantifing biochemical traits from UAV multispectral data, thereby providing timely and accurate information for guiding crop growth monitoring applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Assessing the effectiveness of satellite and UAV-based remote sensing for delineating alfalfa management zones under heterogeneous rootzone soil salinity Advancements and outlooks in utilizing Convolutional Neural Networks for plant disease severity assessment: A comprehensive review Exposing tail biters by automatic scream detection Efficient physics-informed transfer learning to quantify biochemical traits of winter wheat from UAV multispectral imagery Comparative analysis of RGB and multispectral UAV image data for leaf area index estimation of sweet potato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1