{"title":"关于均质混合物的热力学过程、状态方程和临界现象","authors":"Valentin Lychagin","doi":"10.1016/j.geomphys.2024.105324","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the thermodynamics of homogeneous mixtures in equilibrium. From the perspective of thermodynamics, substances are understood as Legendre submanifolds, which are equipped with a Riemannian structure in addition. We refer to these as Legendre-Riemannian manifolds. This Legendre structure reflects the law of conservation of energy, while the Riemannian structure corresponds to the second central moment of measurement of extensive quantities, indicating that we only consider stable states. Thermodynamic processes, such as chemical reactions, correspond to contact vector fields that preserve the law of energy conservation, or are contact. The presence of a Riemannian structure distinguishes between three classes of processes: positive, which increase the metric; neutral, which preserve the metric; and negative, which decrease the metric. We provide a detailed description of the processes and suggest a method for finding state equations for a homogeneous mixture in mechanical or chemical equilibrium.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On thermodynamic processes, state equations and critical phenomena for homogeneous mixtures\",\"authors\":\"Valentin Lychagin\",\"doi\":\"10.1016/j.geomphys.2024.105324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the thermodynamics of homogeneous mixtures in equilibrium. From the perspective of thermodynamics, substances are understood as Legendre submanifolds, which are equipped with a Riemannian structure in addition. We refer to these as Legendre-Riemannian manifolds. This Legendre structure reflects the law of conservation of energy, while the Riemannian structure corresponds to the second central moment of measurement of extensive quantities, indicating that we only consider stable states. Thermodynamic processes, such as chemical reactions, correspond to contact vector fields that preserve the law of energy conservation, or are contact. The presence of a Riemannian structure distinguishes between three classes of processes: positive, which increase the metric; neutral, which preserve the metric; and negative, which decrease the metric. We provide a detailed description of the processes and suggest a method for finding state equations for a homogeneous mixture in mechanical or chemical equilibrium.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002250\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002250","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On thermodynamic processes, state equations and critical phenomena for homogeneous mixtures
In this paper, we study the thermodynamics of homogeneous mixtures in equilibrium. From the perspective of thermodynamics, substances are understood as Legendre submanifolds, which are equipped with a Riemannian structure in addition. We refer to these as Legendre-Riemannian manifolds. This Legendre structure reflects the law of conservation of energy, while the Riemannian structure corresponds to the second central moment of measurement of extensive quantities, indicating that we only consider stable states. Thermodynamic processes, such as chemical reactions, correspond to contact vector fields that preserve the law of energy conservation, or are contact. The presence of a Riemannian structure distinguishes between three classes of processes: positive, which increase the metric; neutral, which preserve the metric; and negative, which decrease the metric. We provide a detailed description of the processes and suggest a method for finding state equations for a homogeneous mixture in mechanical or chemical equilibrium.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity