用于富氧条件下氮氧化物选择性催化还原和一氧化碳氧化的 V-Cu/TiO2 双功能催化剂

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-09-25 DOI:10.1016/j.mcat.2024.114574
Xiaoman Li , Chengyue Lai , Yaping Zhang , Sheng Wang , Shipeng Ding
{"title":"用于富氧条件下氮氧化物选择性催化还原和一氧化碳氧化的 V-Cu/TiO2 双功能催化剂","authors":"Xiaoman Li ,&nbsp;Chengyue Lai ,&nbsp;Yaping Zhang ,&nbsp;Sheng Wang ,&nbsp;Shipeng Ding","doi":"10.1016/j.mcat.2024.114574","DOIUrl":null,"url":null,"abstract":"<div><div>The simultaneous removal of CO and NO<sub>x</sub> in the sintering flue gas over a single catalyst is desirable but challenging. Herein, 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub> bifunctional catalysts that efficiently catalyzed CO and NO<sub>x</sub> at low temperatures were reported, with CO and NO<sub>x</sub> conversions of 100 % at 200–300 °C. The synergistic effect between copper and vanadium oxides enhanced the redox and CO adsorption capacities of 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub>, rendering it abundant acid sites and surface chemisorbed oxygen. The in situ DRIFTS experiments demonstrated that CO oxidation over the dual-active-sites 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub> catalyst follows the Mars-van Krevelen mechanism, while the E-R mechanism was the primary NH<sub>3</sub>-SCR pathway. Due to the presence of dual-active-sites (i.e., separated of the V active sites for the NH<sub>3</sub>-SCR reaction and the Cu active sites for CO oxidation), the competition adsorption of CO and NH<sub>3</sub> on the Cu sites was weakened, resulting in higher CO oxidation performance than the single-active-site catalysts. This work provided insights into the control of flue gas containing CO and NO<sub>x</sub> over a single catalyst.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114574"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional catalysts V-Cu/TiO2 for selective catalytic reduction of NOx and CO oxidation under oxygen-rich conditions\",\"authors\":\"Xiaoman Li ,&nbsp;Chengyue Lai ,&nbsp;Yaping Zhang ,&nbsp;Sheng Wang ,&nbsp;Shipeng Ding\",\"doi\":\"10.1016/j.mcat.2024.114574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The simultaneous removal of CO and NO<sub>x</sub> in the sintering flue gas over a single catalyst is desirable but challenging. Herein, 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub> bifunctional catalysts that efficiently catalyzed CO and NO<sub>x</sub> at low temperatures were reported, with CO and NO<sub>x</sub> conversions of 100 % at 200–300 °C. The synergistic effect between copper and vanadium oxides enhanced the redox and CO adsorption capacities of 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub>, rendering it abundant acid sites and surface chemisorbed oxygen. The in situ DRIFTS experiments demonstrated that CO oxidation over the dual-active-sites 2 %V<sub>2</sub>O<sub>5</sub>–5 %CuO/TiO<sub>2</sub> catalyst follows the Mars-van Krevelen mechanism, while the E-R mechanism was the primary NH<sub>3</sub>-SCR pathway. Due to the presence of dual-active-sites (i.e., separated of the V active sites for the NH<sub>3</sub>-SCR reaction and the Cu active sites for CO oxidation), the competition adsorption of CO and NH<sub>3</sub> on the Cu sites was weakened, resulting in higher CO oxidation performance than the single-active-site catalysts. This work provided insights into the control of flue gas containing CO and NO<sub>x</sub> over a single catalyst.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114574\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007569\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007569","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在单一催化剂上同时去除烧结烟气中的一氧化碳和氮氧化物是一种理想但具有挑战性的方法。本文报告了 2 %V2O5-5 %CuO/TiO2 双功能催化剂,该催化剂可在低温下高效催化一氧化碳和氮氧化物,在 200-300 °C 温度下,一氧化碳和氮氧化物的转化率达到 100%。铜和钒氧化物之间的协同效应增强了 2 %V2O5-5 %CuO/TiO2 的氧化还原能力和 CO 吸附能力,使其具有丰富的酸性位点和表面化学吸附氧。原位 DRIFTS 实验表明,双活性位点 2 %V2O5-5 %CuO/TiO2 催化剂上的 CO 氧化遵循 Mars-van Krevelen 机制,而 E-R 机制则是主要的 NH3-SCR 途径。由于存在双活性位点(即用于 NH3-SCR 反应的 V 活性位点和用于 CO 氧化的 Cu 活性位点分离),CO 和 NH3 在 Cu 位点上的竞争吸附作用减弱,因此 CO 氧化性能高于单活性位点催化剂。这项工作为在单一催化剂上控制含有 CO 和 NOx 的烟气提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bifunctional catalysts V-Cu/TiO2 for selective catalytic reduction of NOx and CO oxidation under oxygen-rich conditions
The simultaneous removal of CO and NOx in the sintering flue gas over a single catalyst is desirable but challenging. Herein, 2 %V2O5–5 %CuO/TiO2 bifunctional catalysts that efficiently catalyzed CO and NOx at low temperatures were reported, with CO and NOx conversions of 100 % at 200–300 °C. The synergistic effect between copper and vanadium oxides enhanced the redox and CO adsorption capacities of 2 %V2O5–5 %CuO/TiO2, rendering it abundant acid sites and surface chemisorbed oxygen. The in situ DRIFTS experiments demonstrated that CO oxidation over the dual-active-sites 2 %V2O5–5 %CuO/TiO2 catalyst follows the Mars-van Krevelen mechanism, while the E-R mechanism was the primary NH3-SCR pathway. Due to the presence of dual-active-sites (i.e., separated of the V active sites for the NH3-SCR reaction and the Cu active sites for CO oxidation), the competition adsorption of CO and NH3 on the Cu sites was weakened, resulting in higher CO oxidation performance than the single-active-site catalysts. This work provided insights into the control of flue gas containing CO and NOx over a single catalyst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Proper NCoordination improves catalytic activity of graphene edge anchored Pt single atom for conversion of methane and carbon dioxide to acetic acid Spiro-linked hanging group cobalt phthalocyanine for CO2-to-methanol electrocatalysis unveiled by grand canonical density functional theory On the Mechanism of Acrylate and Propionate Silyl Esters Synthesis by Ruthenium-Catalyzed Coupling of CO2 with C2H4 in the Presence of Hydrosilanes: Combined Experimental and Computational Investigations Light alkanes dehydrogenation over silica supported gallium catalysts Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1