{"title":"适用于多样化环境中动态物联网安全策略的自适应边缘安全框架","authors":"Malka N. Halgamuge , Dusit Niyato","doi":"10.1016/j.cose.2024.104128","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of Internet of Things (IoT) technologies has introduced significant cybersecurity challenges, particularly at the network edge where IoT devices operate. Traditional security policies designed for static environments fall short of addressing the dynamic, heterogeneous, and resource-constrained nature of IoT ecosystems. Existing dynamic security policy models lack versatility and fail to fully integrate comprehensive risk assessments, regulatory compliance, and AI/ML (artificial intelligence/machine learning)-driven adaptability. We develop a novel adaptive edge security framework that dynamically generates and adjusts security policies for IoT edge devices. Our framework integrates a dynamic security policy generator, a conflict detection and resolution in policy generator, a bias-aware risk assessment system, a regulatory compliance analysis system, and an AI-driven adaptability integration system. This approach produces tailored security policies that adapt to changes in the threat landscape, regulatory requirements, and device statuses. Our study identifies critical security challenges in diverse IoT environments and demonstrates the effectiveness of our framework through simulations and real-world scenarios. We found that our framework significantly enhances the adaptability and resilience of IoT security policies. Our results demonstrate the potential of AI/ML integration in creating responsive and robust security measures for IoT ecosystems. The implications of our findings suggest that dynamic and adaptive security frameworks are essential for protecting IoT devices against evolving cyber threats, ensuring compliance with regulatory standards, and maintaining the integrity and availability of IoT services across various applications.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104128"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive edge security framework for dynamic IoT security policies in diverse environments\",\"authors\":\"Malka N. Halgamuge , Dusit Niyato\",\"doi\":\"10.1016/j.cose.2024.104128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid expansion of Internet of Things (IoT) technologies has introduced significant cybersecurity challenges, particularly at the network edge where IoT devices operate. Traditional security policies designed for static environments fall short of addressing the dynamic, heterogeneous, and resource-constrained nature of IoT ecosystems. Existing dynamic security policy models lack versatility and fail to fully integrate comprehensive risk assessments, regulatory compliance, and AI/ML (artificial intelligence/machine learning)-driven adaptability. We develop a novel adaptive edge security framework that dynamically generates and adjusts security policies for IoT edge devices. Our framework integrates a dynamic security policy generator, a conflict detection and resolution in policy generator, a bias-aware risk assessment system, a regulatory compliance analysis system, and an AI-driven adaptability integration system. This approach produces tailored security policies that adapt to changes in the threat landscape, regulatory requirements, and device statuses. Our study identifies critical security challenges in diverse IoT environments and demonstrates the effectiveness of our framework through simulations and real-world scenarios. We found that our framework significantly enhances the adaptability and resilience of IoT security policies. Our results demonstrate the potential of AI/ML integration in creating responsive and robust security measures for IoT ecosystems. The implications of our findings suggest that dynamic and adaptive security frameworks are essential for protecting IoT devices against evolving cyber threats, ensuring compliance with regulatory standards, and maintaining the integrity and availability of IoT services across various applications.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104128\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004334\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004334","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adaptive edge security framework for dynamic IoT security policies in diverse environments
The rapid expansion of Internet of Things (IoT) technologies has introduced significant cybersecurity challenges, particularly at the network edge where IoT devices operate. Traditional security policies designed for static environments fall short of addressing the dynamic, heterogeneous, and resource-constrained nature of IoT ecosystems. Existing dynamic security policy models lack versatility and fail to fully integrate comprehensive risk assessments, regulatory compliance, and AI/ML (artificial intelligence/machine learning)-driven adaptability. We develop a novel adaptive edge security framework that dynamically generates and adjusts security policies for IoT edge devices. Our framework integrates a dynamic security policy generator, a conflict detection and resolution in policy generator, a bias-aware risk assessment system, a regulatory compliance analysis system, and an AI-driven adaptability integration system. This approach produces tailored security policies that adapt to changes in the threat landscape, regulatory requirements, and device statuses. Our study identifies critical security challenges in diverse IoT environments and demonstrates the effectiveness of our framework through simulations and real-world scenarios. We found that our framework significantly enhances the adaptability and resilience of IoT security policies. Our results demonstrate the potential of AI/ML integration in creating responsive and robust security measures for IoT ecosystems. The implications of our findings suggest that dynamic and adaptive security frameworks are essential for protecting IoT devices against evolving cyber threats, ensuring compliance with regulatory standards, and maintaining the integrity and availability of IoT services across various applications.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.