{"title":"时间最优点对点运动规划:两阶段方法","authors":"Shuhao Zhang , Jan Swevers","doi":"10.1016/j.ifacol.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a two-stage approach to formulate the time-optimal point-to-point motion planning problem, involving a first stage with a fixed time grid and a second stage with a variable time grid. The proposed approach brings benefits through its straightforward optimal control problem formulation with a fixed and low number of control steps for manageable computational complexity and the avoidance of interpolation errors associated with time scaling, especially when aiming to reach a distant goal. Additionally, an asynchronous nonlinear model predictive control (NMPC) update scheme is integrated with this two-stage approach to address delayed and fluctuating computation times, facilitating online replanning. The effectiveness of the proposed two-stage approach and NMPC implementation is demonstrated through numerical examples centered on autonomous navigation with collision avoidance.</div></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 18","pages":"Pages 139-145"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-optimal Point-to-point Motion Planning: A Two-stage Approach\",\"authors\":\"Shuhao Zhang , Jan Swevers\",\"doi\":\"10.1016/j.ifacol.2024.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a two-stage approach to formulate the time-optimal point-to-point motion planning problem, involving a first stage with a fixed time grid and a second stage with a variable time grid. The proposed approach brings benefits through its straightforward optimal control problem formulation with a fixed and low number of control steps for manageable computational complexity and the avoidance of interpolation errors associated with time scaling, especially when aiming to reach a distant goal. Additionally, an asynchronous nonlinear model predictive control (NMPC) update scheme is integrated with this two-stage approach to address delayed and fluctuating computation times, facilitating online replanning. The effectiveness of the proposed two-stage approach and NMPC implementation is demonstrated through numerical examples centered on autonomous navigation with collision avoidance.</div></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 18\",\"pages\":\"Pages 139-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324014010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324014010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Time-optimal Point-to-point Motion Planning: A Two-stage Approach
This paper proposes a two-stage approach to formulate the time-optimal point-to-point motion planning problem, involving a first stage with a fixed time grid and a second stage with a variable time grid. The proposed approach brings benefits through its straightforward optimal control problem formulation with a fixed and low number of control steps for manageable computational complexity and the avoidance of interpolation errors associated with time scaling, especially when aiming to reach a distant goal. Additionally, an asynchronous nonlinear model predictive control (NMPC) update scheme is integrated with this two-stage approach to address delayed and fluctuating computation times, facilitating online replanning. The effectiveness of the proposed two-stage approach and NMPC implementation is demonstrated through numerical examples centered on autonomous navigation with collision avoidance.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.