基于群落结构呈现的图形表示学习可视化评估

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2024-09-01 DOI:10.1016/j.visinf.2024.08.001
Yong Zhang , Lihong Cai , Yuhua Liu , Yize Li , Songyue Li , Yuming Ma , Yuwei Meng , Zhiguang Zhou
{"title":"基于群落结构呈现的图形表示学习可视化评估","authors":"Yong Zhang ,&nbsp;Lihong Cai ,&nbsp;Yuhua Liu ,&nbsp;Yize Li ,&nbsp;Songyue Li ,&nbsp;Yuming Ma ,&nbsp;Yuwei Meng ,&nbsp;Zhiguang Zhou","doi":"10.1016/j.visinf.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization, random walk, and deep learning. However, choosing the right method for different tasks can be challenging. Communities within networks help reveal underlying structures and correlations. Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis. This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces, including the consistency of community structure, node distribution within and between communities, and central node distribution. A visualization system presents these indicators, allowing users to evaluate models based on community structures. Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 3","pages":"Pages 29-31"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual evaluation of graph representation learning based on the presentation of community structures\",\"authors\":\"Yong Zhang ,&nbsp;Lihong Cai ,&nbsp;Yuhua Liu ,&nbsp;Yize Li ,&nbsp;Songyue Li ,&nbsp;Yuming Ma ,&nbsp;Yuwei Meng ,&nbsp;Zhiguang Zhou\",\"doi\":\"10.1016/j.visinf.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization, random walk, and deep learning. However, choosing the right method for different tasks can be challenging. Communities within networks help reveal underlying structures and correlations. Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis. This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces, including the consistency of community structure, node distribution within and between communities, and central node distribution. A visualization system presents these indicators, allowing users to evaluate models based on community structures. Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.</div></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"8 3\",\"pages\":\"Pages 29-31\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X2400041X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X2400041X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

各种图表示学习模型使用矩阵因式分解、随机漫步和深度学习等技术将图节点转换为向量。然而,为不同的任务选择正确的方法可能具有挑战性。网络中的群落有助于揭示潜在的结构和相关性。研究不同模型如何保留社群属性,对于确定数据分析的最佳图表示法至关重要。本文定义了一些指标,用于探索表征学习空间中群落属性的感知质量,包括群落结构的一致性、群落内部和群落之间的节点分布以及中心节点分布。一个可视化系统展示了这些指标,使用户能够根据社群结构对模型进行评估。案例研究证明了这些指标对图形表征学习模型进行可视化评估的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual evaluation of graph representation learning based on the presentation of community structures
Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization, random walk, and deep learning. However, choosing the right method for different tasks can be challenging. Communities within networks help reveal underlying structures and correlations. Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis. This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces, including the consistency of community structure, node distribution within and between communities, and central node distribution. A visualization system presents these indicators, allowing users to evaluate models based on community structures. Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1