Nieqing Cao , Abdelrahman Farrag , Daehan Won , Sang Won Yoon
{"title":"XSCAN:通过不平衡数据的焊膏印刷状态预测可解释的焊点缺陷概率","authors":"Nieqing Cao , Abdelrahman Farrag , Daehan Won , Sang Won Yoon","doi":"10.1016/j.jmsy.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>This research addresses challenges in Surface Mount Technology (SMT) related to solder joint quality prediction, focusing on the initial solder paste printing stage. Recognizing that over 50% of defects originate at the printing stage, this research delves into establishing a direct correlation between printing quality and joint quality. Traditional approaches have limitations in accurately predicting defects due to isolated treatment of printing quality indicators, scarce explainability of prediction models, and lack of joint defect data. This research introduces a novel framework, XSCAN, aimed at predicting the probabilities of solder joint defects from the states of the printed solder paste. This is accomplished by using a generative adversarial network (GAN) to synthesize additional defect data and segment the feature space of printing indicators using customized decision trees to minimize defect probability prediction error. Specifically, XSCAN optimizes generative model structures using decision tree prediction results focused on defects, generating valuable defect information to help feature space partition. Also, pruning rules are designed to handle imbalanced data and improve defect prediction. They enhance explainability by defining safe and high-risk zones for solder paste quality. XSCAN outperforms all other baselines when tested on real-world datasets of chip resistors. It achieves the lowest prediction error and provides different warning levels for potential joint defects. XSCAN takes a proactive approach to improve manufacturing quality while addressing data imbalance and model explainability challenges. It provides practical insights to enhance SMT processes and reduce waste and rework costs.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 212-227"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XSCAN: Explainable solder joint defect probability prediction through solder paste printing status with imbalanced data\",\"authors\":\"Nieqing Cao , Abdelrahman Farrag , Daehan Won , Sang Won Yoon\",\"doi\":\"10.1016/j.jmsy.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research addresses challenges in Surface Mount Technology (SMT) related to solder joint quality prediction, focusing on the initial solder paste printing stage. Recognizing that over 50% of defects originate at the printing stage, this research delves into establishing a direct correlation between printing quality and joint quality. Traditional approaches have limitations in accurately predicting defects due to isolated treatment of printing quality indicators, scarce explainability of prediction models, and lack of joint defect data. This research introduces a novel framework, XSCAN, aimed at predicting the probabilities of solder joint defects from the states of the printed solder paste. This is accomplished by using a generative adversarial network (GAN) to synthesize additional defect data and segment the feature space of printing indicators using customized decision trees to minimize defect probability prediction error. Specifically, XSCAN optimizes generative model structures using decision tree prediction results focused on defects, generating valuable defect information to help feature space partition. Also, pruning rules are designed to handle imbalanced data and improve defect prediction. They enhance explainability by defining safe and high-risk zones for solder paste quality. XSCAN outperforms all other baselines when tested on real-world datasets of chip resistors. It achieves the lowest prediction error and provides different warning levels for potential joint defects. XSCAN takes a proactive approach to improve manufacturing quality while addressing data imbalance and model explainability challenges. It provides practical insights to enhance SMT processes and reduce waste and rework costs.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 212-227\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002115\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
XSCAN: Explainable solder joint defect probability prediction through solder paste printing status with imbalanced data
This research addresses challenges in Surface Mount Technology (SMT) related to solder joint quality prediction, focusing on the initial solder paste printing stage. Recognizing that over 50% of defects originate at the printing stage, this research delves into establishing a direct correlation between printing quality and joint quality. Traditional approaches have limitations in accurately predicting defects due to isolated treatment of printing quality indicators, scarce explainability of prediction models, and lack of joint defect data. This research introduces a novel framework, XSCAN, aimed at predicting the probabilities of solder joint defects from the states of the printed solder paste. This is accomplished by using a generative adversarial network (GAN) to synthesize additional defect data and segment the feature space of printing indicators using customized decision trees to minimize defect probability prediction error. Specifically, XSCAN optimizes generative model structures using decision tree prediction results focused on defects, generating valuable defect information to help feature space partition. Also, pruning rules are designed to handle imbalanced data and improve defect prediction. They enhance explainability by defining safe and high-risk zones for solder paste quality. XSCAN outperforms all other baselines when tested on real-world datasets of chip resistors. It achieves the lowest prediction error and provides different warning levels for potential joint defects. XSCAN takes a proactive approach to improve manufacturing quality while addressing data imbalance and model explainability challenges. It provides practical insights to enhance SMT processes and reduce waste and rework costs.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.