通过明矾电解质添加剂对高性能锌-钒水溶液电池的阳极和阴极相间进行协同调节

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-26 DOI:10.1002/anie.202415221
Lingjun He, Chuyuan Lin, Lingxing Zeng, Fuyu Xiao, Hui Lin, Peixun Xiong, Qingrong Qian, Qinghua Chen, Zhenhua Yan, Jun Chen
{"title":"通过明矾电解质添加剂对高性能锌-钒水溶液电池的阳极和阴极相间进行协同调节","authors":"Lingjun He, Chuyuan Lin, Lingxing Zeng, Fuyu Xiao, Hui Lin, Peixun Xiong, Qingrong Qian, Qinghua Chen, Zhenhua Yan, Jun Chen","doi":"10.1002/anie.202415221","DOIUrl":null,"url":null,"abstract":"A zinc (Zn) metal anode paired with a vanadium oxide (VOx) cathode is a promising system for aqueous Zn–ion batteries (AZIBs); however, side reactions proliferating on the Zn anode surface and the infinite dissolution of the VOx cathode destabilise the battery system. Here, we introduce a multi-functional additive into the ZnSO4 (ZS) electrolyte, KAl(SO4)2 (KASO), to synchronise the in-situ construction of the protective layer on the surface of the Zn anode and the VOx cathode. Theoretical calculations and synchrotron radiation have verified that the high-valence Al3+ plays multifunctional roles of competing with Zn2+ for solvation and forming a Zn–Al alloy layer with a homogeneous electric field to mitigate the side reactions and dendrite generation. The Al-containing cathode–electrolyte interface considerably alleviates the irreversible dissolution of the VOx cathode and the accumulation of byproducts. Consequently, the Zn || Zn cell with KASO exhibits an ultra-long cycle of 6000 h at 2 mA cm−2. Importantly, the VOx cathodes (VO2, V2O5 and NH4V4O10) in the ZS–KASO electrolyte showed excellent cycling stability, even at a low negative/positive (N/P) ratio of 2.83 and high mass loading (~16 mg cm-2). This study offers a practical reference for concurrently addressing challenges at the anode and cathode of AZIBs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Regulation of Anode and Cathode Interphases via an Alum Electrolyte Additive for High-performance Aqueous Zinc–Vanadium Batteries\",\"authors\":\"Lingjun He, Chuyuan Lin, Lingxing Zeng, Fuyu Xiao, Hui Lin, Peixun Xiong, Qingrong Qian, Qinghua Chen, Zhenhua Yan, Jun Chen\",\"doi\":\"10.1002/anie.202415221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A zinc (Zn) metal anode paired with a vanadium oxide (VOx) cathode is a promising system for aqueous Zn–ion batteries (AZIBs); however, side reactions proliferating on the Zn anode surface and the infinite dissolution of the VOx cathode destabilise the battery system. Here, we introduce a multi-functional additive into the ZnSO4 (ZS) electrolyte, KAl(SO4)2 (KASO), to synchronise the in-situ construction of the protective layer on the surface of the Zn anode and the VOx cathode. Theoretical calculations and synchrotron radiation have verified that the high-valence Al3+ plays multifunctional roles of competing with Zn2+ for solvation and forming a Zn–Al alloy layer with a homogeneous electric field to mitigate the side reactions and dendrite generation. The Al-containing cathode–electrolyte interface considerably alleviates the irreversible dissolution of the VOx cathode and the accumulation of byproducts. Consequently, the Zn || Zn cell with KASO exhibits an ultra-long cycle of 6000 h at 2 mA cm−2. Importantly, the VOx cathodes (VO2, V2O5 and NH4V4O10) in the ZS–KASO electrolyte showed excellent cycling stability, even at a low negative/positive (N/P) ratio of 2.83 and high mass loading (~16 mg cm-2). This study offers a practical reference for concurrently addressing challenges at the anode and cathode of AZIBs.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202415221\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415221","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌(Zn)金属阳极与氧化钒(VOx)阴极配对是一种很有前途的水性锌离子电池(AZIBs)系统;然而,锌阳极表面的副反应扩散和氧化钒阴极的无限溶解破坏了电池系统的稳定性。在此,我们在 ZnSO4(ZS)电解液中引入了一种多功能添加剂 KAl(SO4)2(KASO),以同步在锌阳极和 VOx 阴极表面原位构建保护层。理论计算和同步辐射验证了高价Al3+的多功能作用:与Zn2+竞争溶解,并形成具有均匀电场的Zn-Al合金层,以减轻副反应和枝晶的生成。含 Al 的阴极-电解质界面大大缓解了 VOx 阴极的不可逆溶解和副产物的积累。因此,带有 KASO 的 Zn || Zn 电池在 2 mA cm-2 电流条件下可实现 6000 小时的超长循环。重要的是,ZS-KASO 电解液中的 VOx 阴极(VO2、V2O5 和 NH4V4O10)即使在低负极/正极(N/P)比(2.83)和高负载(约 16 毫克厘米-2)条件下,也表现出卓越的循环稳定性。这项研究为同时应对 AZIBs 阳极和阴极的挑战提供了实用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic Regulation of Anode and Cathode Interphases via an Alum Electrolyte Additive for High-performance Aqueous Zinc–Vanadium Batteries
A zinc (Zn) metal anode paired with a vanadium oxide (VOx) cathode is a promising system for aqueous Zn–ion batteries (AZIBs); however, side reactions proliferating on the Zn anode surface and the infinite dissolution of the VOx cathode destabilise the battery system. Here, we introduce a multi-functional additive into the ZnSO4 (ZS) electrolyte, KAl(SO4)2 (KASO), to synchronise the in-situ construction of the protective layer on the surface of the Zn anode and the VOx cathode. Theoretical calculations and synchrotron radiation have verified that the high-valence Al3+ plays multifunctional roles of competing with Zn2+ for solvation and forming a Zn–Al alloy layer with a homogeneous electric field to mitigate the side reactions and dendrite generation. The Al-containing cathode–electrolyte interface considerably alleviates the irreversible dissolution of the VOx cathode and the accumulation of byproducts. Consequently, the Zn || Zn cell with KASO exhibits an ultra-long cycle of 6000 h at 2 mA cm−2. Importantly, the VOx cathodes (VO2, V2O5 and NH4V4O10) in the ZS–KASO electrolyte showed excellent cycling stability, even at a low negative/positive (N/P) ratio of 2.83 and high mass loading (~16 mg cm-2). This study offers a practical reference for concurrently addressing challenges at the anode and cathode of AZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Correspondence on "A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors". Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode. Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries. Regulating Zn2+ Migration-Diffusion Behavior by Spontaneous Cascade Optimization Strategy for Long-Life and Low N/P Ratio Zinc Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1