Hazem Elkady , Walid E. Elgammal , Hazem A. Mahdy , Susi Zara , Simone Carradori , Dalal Z. Husein , Aisha A. Alsfouk , Ibrahim M. Ibrahim , Eslam B. Elkaeed , Ahmed M. Metwaly , Ibrahim H. Eissa
{"title":"靶向血管内皮生长因子受体-2 的抗增殖 2,3-二氢-1,3,4-噻二唑:设计、合成、体外和硅学研究","authors":"Hazem Elkady , Walid E. Elgammal , Hazem A. Mahdy , Susi Zara , Simone Carradori , Dalal Z. Husein , Aisha A. Alsfouk , Ibrahim M. Ibrahim , Eslam B. Elkaeed , Ahmed M. Metwaly , Ibrahim H. Eissa","doi":"10.1016/j.compbiolchem.2024.108221","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present the design, synthesis, and evaluation of six new thiadiazole derivatives designed as VEGFR-2 inhibitors. The most promising compound, <strong>18b</strong>, demonstrated promising inhibitory activity against VEGFR-2, with an IC<sub>50</sub> value of 0.165 µg/mL. The <em>in vitro</em> assessments on MCF-7 and HepG2 cell lines revealed the superior anti-proliferative effects of compound <strong>18b</strong>, exhibiting IC<sub>50</sub> values of 0.06 and 0.17 µM, respectively. Further investigations into the cell cycle distribution of compound <strong>18b</strong> on MCF-7 cells exhibited a cell cycle arrest at the S phase (52.96 %) and significantly reducing the percentage of cells in the G0-G1 and G2/M phases. Additionally, compound <strong>18b</strong> demonstrated a remarkable pro-apoptotic effect, with 45.29 % total apoptosis, characterized by both early and late apoptosis, and minimal necrosis. These findings were corroborated by RT-PCR analysis, revealing a significant downregulation of the anti-apoptotic gene Bcl2 and upregulation of the pro-apoptotic gene BAX in compound <strong>18b</strong>-treated cells compared to control MCF-7 cells. Moreover, <em>in silico</em> studies involving molecular docking, Density Functional Theory (DFT) calculations, Molecular Dynamics (MD) simulations, MM-GBSA, Principle Component Analysis of Trajectories (PCAT), in addition to Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictions underscored the molecular interactions, energetics, and pharmacokinetic properties of compound <strong>18b</strong> and the other derivatives further supporting its potential. Our integrated approach, combining <em>in vitro</em> experimens with <em>in silico</em> predictions provides valuable insights into the therapeutic potential of compound <strong>18b</strong> as a robust VEGFR-2 inhibitor and lays the groundwork for future optimization.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108221"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-proliferative 2,3-dihydro-1,3,4-thiadiazoles targeting VEGFR-2: Design, synthesis, in vitro, and in silico studies\",\"authors\":\"Hazem Elkady , Walid E. Elgammal , Hazem A. Mahdy , Susi Zara , Simone Carradori , Dalal Z. Husein , Aisha A. Alsfouk , Ibrahim M. Ibrahim , Eslam B. Elkaeed , Ahmed M. Metwaly , Ibrahim H. Eissa\",\"doi\":\"10.1016/j.compbiolchem.2024.108221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we present the design, synthesis, and evaluation of six new thiadiazole derivatives designed as VEGFR-2 inhibitors. The most promising compound, <strong>18b</strong>, demonstrated promising inhibitory activity against VEGFR-2, with an IC<sub>50</sub> value of 0.165 µg/mL. The <em>in vitro</em> assessments on MCF-7 and HepG2 cell lines revealed the superior anti-proliferative effects of compound <strong>18b</strong>, exhibiting IC<sub>50</sub> values of 0.06 and 0.17 µM, respectively. Further investigations into the cell cycle distribution of compound <strong>18b</strong> on MCF-7 cells exhibited a cell cycle arrest at the S phase (52.96 %) and significantly reducing the percentage of cells in the G0-G1 and G2/M phases. Additionally, compound <strong>18b</strong> demonstrated a remarkable pro-apoptotic effect, with 45.29 % total apoptosis, characterized by both early and late apoptosis, and minimal necrosis. These findings were corroborated by RT-PCR analysis, revealing a significant downregulation of the anti-apoptotic gene Bcl2 and upregulation of the pro-apoptotic gene BAX in compound <strong>18b</strong>-treated cells compared to control MCF-7 cells. Moreover, <em>in silico</em> studies involving molecular docking, Density Functional Theory (DFT) calculations, Molecular Dynamics (MD) simulations, MM-GBSA, Principle Component Analysis of Trajectories (PCAT), in addition to Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictions underscored the molecular interactions, energetics, and pharmacokinetic properties of compound <strong>18b</strong> and the other derivatives further supporting its potential. Our integrated approach, combining <em>in vitro</em> experimens with <em>in silico</em> predictions provides valuable insights into the therapeutic potential of compound <strong>18b</strong> as a robust VEGFR-2 inhibitor and lays the groundwork for future optimization.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108221\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002093\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Anti-proliferative 2,3-dihydro-1,3,4-thiadiazoles targeting VEGFR-2: Design, synthesis, in vitro, and in silico studies
In this study, we present the design, synthesis, and evaluation of six new thiadiazole derivatives designed as VEGFR-2 inhibitors. The most promising compound, 18b, demonstrated promising inhibitory activity against VEGFR-2, with an IC50 value of 0.165 µg/mL. The in vitro assessments on MCF-7 and HepG2 cell lines revealed the superior anti-proliferative effects of compound 18b, exhibiting IC50 values of 0.06 and 0.17 µM, respectively. Further investigations into the cell cycle distribution of compound 18b on MCF-7 cells exhibited a cell cycle arrest at the S phase (52.96 %) and significantly reducing the percentage of cells in the G0-G1 and G2/M phases. Additionally, compound 18b demonstrated a remarkable pro-apoptotic effect, with 45.29 % total apoptosis, characterized by both early and late apoptosis, and minimal necrosis. These findings were corroborated by RT-PCR analysis, revealing a significant downregulation of the anti-apoptotic gene Bcl2 and upregulation of the pro-apoptotic gene BAX in compound 18b-treated cells compared to control MCF-7 cells. Moreover, in silico studies involving molecular docking, Density Functional Theory (DFT) calculations, Molecular Dynamics (MD) simulations, MM-GBSA, Principle Component Analysis of Trajectories (PCAT), in addition to Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) predictions underscored the molecular interactions, energetics, and pharmacokinetic properties of compound 18b and the other derivatives further supporting its potential. Our integrated approach, combining in vitro experimens with in silico predictions provides valuable insights into the therapeutic potential of compound 18b as a robust VEGFR-2 inhibitor and lays the groundwork for future optimization.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.