基于局部尖端连续损伤动力学的振动频谱下裂纹扩展有限元建模

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-09-16 DOI:10.1016/j.engfracmech.2024.110495
{"title":"基于局部尖端连续损伤动力学的振动频谱下裂纹扩展有限元建模","authors":"","doi":"10.1016/j.engfracmech.2024.110495","DOIUrl":null,"url":null,"abstract":"<div><div>The shift of the dynamic response of a structural part during the propagation of embedded defects may have a significant effect over its remaining fatigue life, of particular relevance in components subjected to severe vibration environment. Traditional high cycle fatigue approaches predict the safe-life of the part based on the number of cycles required for fatigue crack nucleation, i.e. based on an un-propagated crack condition stress state. This work prospects the incorporation of a local tip-based continuum damage model into the elastodynamic finite element discretization of cracked specimens exposed to vibratory excitation. The resulting ‘continuum damage dynamics’ algorithm performs the coupled, interdependent updates of fatigue damage accumulation, modal decomposition and dynamic response at each step of the simulation. The study explores scenarios of excitation close to resonance and assesses the sensitivity to the damping ratio, the mesh size and the material characterization for the plasticity-dominated region surrounding the crack tip. The proposed numerical scheme allows to estimate the fatigue life and to recreate the dynamic crack propagation measured in physical tests with fixed and random forcing frequencies.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element modelling of crack propagation under vibration spectrum based on local tip continuum damage dynamics\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The shift of the dynamic response of a structural part during the propagation of embedded defects may have a significant effect over its remaining fatigue life, of particular relevance in components subjected to severe vibration environment. Traditional high cycle fatigue approaches predict the safe-life of the part based on the number of cycles required for fatigue crack nucleation, i.e. based on an un-propagated crack condition stress state. This work prospects the incorporation of a local tip-based continuum damage model into the elastodynamic finite element discretization of cracked specimens exposed to vibratory excitation. The resulting ‘continuum damage dynamics’ algorithm performs the coupled, interdependent updates of fatigue damage accumulation, modal decomposition and dynamic response at each step of the simulation. The study explores scenarios of excitation close to resonance and assesses the sensitivity to the damping ratio, the mesh size and the material characterization for the plasticity-dominated region surrounding the crack tip. The proposed numerical scheme allows to estimate the fatigue life and to recreate the dynamic crack propagation measured in physical tests with fixed and random forcing frequencies.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006581\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006581","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在嵌入式缺陷扩展过程中,结构部件动态响应的变化可能会对其剩余疲劳寿命产生重大影响,这一点对于承受剧烈振动环境的部件尤为重要。传统的高循环疲劳方法是根据疲劳裂纹成核所需的循环次数来预测零件的安全寿命,即基于未扩展裂纹条件下的应力状态。这项工作的前景是将基于局部尖端的连续损伤模型纳入暴露在振动激励下的裂纹试样的弹性有限元离散化中。由此产生的 "连续损伤动力学 "算法可在模拟的每一步对疲劳损伤累积、模态分解和动态响应进行相互依存的耦合更新。研究探讨了接近共振的激励情景,并评估了对阻尼比、网格尺寸和裂纹尖端周围塑性主导区域材料特性的敏感性。所提出的数值方案可以估算疲劳寿命,并重现物理测试中使用固定和随机激励频率测量到的动态裂纹扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite element modelling of crack propagation under vibration spectrum based on local tip continuum damage dynamics
The shift of the dynamic response of a structural part during the propagation of embedded defects may have a significant effect over its remaining fatigue life, of particular relevance in components subjected to severe vibration environment. Traditional high cycle fatigue approaches predict the safe-life of the part based on the number of cycles required for fatigue crack nucleation, i.e. based on an un-propagated crack condition stress state. This work prospects the incorporation of a local tip-based continuum damage model into the elastodynamic finite element discretization of cracked specimens exposed to vibratory excitation. The resulting ‘continuum damage dynamics’ algorithm performs the coupled, interdependent updates of fatigue damage accumulation, modal decomposition and dynamic response at each step of the simulation. The study explores scenarios of excitation close to resonance and assesses the sensitivity to the damping ratio, the mesh size and the material characterization for the plasticity-dominated region surrounding the crack tip. The proposed numerical scheme allows to estimate the fatigue life and to recreate the dynamic crack propagation measured in physical tests with fixed and random forcing frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board A novel experimental method for studying rock collision Crystal plasticity-driven evaluation of notch fatigue behavior in IN718 Research on the microstructure, mechanical and fatigue performance of 7075/6061 dissimilar aluminum alloy fusion welding joint treated by nanoparticle and post-weld heat treatment Strain-gradient and damage failure behavior in particle reinforced heterogeneous matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1