基于深度学习的物体检测研究的六类综合牙科数据集

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-09-21 DOI:10.1016/j.dib.2024.110970
Rubaba Binte Rahman, Sharia Arfin Tanim, Nazia Alfaz, Tahmid Enam Shrestha, Md Saef Ullah Miah, M.F. Mridha
{"title":"基于深度学习的物体检测研究的六类综合牙科数据集","authors":"Rubaba Binte Rahman,&nbsp;Sharia Arfin Tanim,&nbsp;Nazia Alfaz,&nbsp;Tahmid Enam Shrestha,&nbsp;Md Saef Ullah Miah,&nbsp;M.F. Mridha","doi":"10.1016/j.dib.2024.110970","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a dental dataset for the improvement of research on deep learning-based detection and classification of dental diseases. The dataset is consisted of 232 panoramic dental radiographs, categorized into six major classes: healthy teeth, caries, impacted teeth, infections, fractured teeth, and broken-down crowns/roots (BDC/BDR). The images were collected from three renowned private clinics in Dhaka, Bangladesh, with the help of an experienced dental practitioner who ensured the confidentiality of patients and high-quality data acquisition using a 64-megapixel Android phone camera. To enhance the value of the dataset for machine and deep learning applications, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) for image enhancement and augmented the data. The images were annotated using the CVAT tool and reviewed by dental experts. This benchmark dataset is publicly available and provides a valuable resource for researchers in artificial intelligence, computer science, and dental informatics to promote interdisciplinary collaboration and the development of advanced algorithms for dental disease detection.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive dental dataset of six classes for deep learning based object detection study\",\"authors\":\"Rubaba Binte Rahman,&nbsp;Sharia Arfin Tanim,&nbsp;Nazia Alfaz,&nbsp;Tahmid Enam Shrestha,&nbsp;Md Saef Ullah Miah,&nbsp;M.F. Mridha\",\"doi\":\"10.1016/j.dib.2024.110970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a dental dataset for the improvement of research on deep learning-based detection and classification of dental diseases. The dataset is consisted of 232 panoramic dental radiographs, categorized into six major classes: healthy teeth, caries, impacted teeth, infections, fractured teeth, and broken-down crowns/roots (BDC/BDR). The images were collected from three renowned private clinics in Dhaka, Bangladesh, with the help of an experienced dental practitioner who ensured the confidentiality of patients and high-quality data acquisition using a 64-megapixel Android phone camera. To enhance the value of the dataset for machine and deep learning applications, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) for image enhancement and augmented the data. The images were annotated using the CVAT tool and reviewed by dental experts. This benchmark dataset is publicly available and provides a valuable resource for researchers in artificial intelligence, computer science, and dental informatics to promote interdisciplinary collaboration and the development of advanced algorithms for dental disease detection.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个牙科数据集,用于改进基于深度学习的牙科疾病检测和分类研究。该数据集由 232 张全景牙科 X 光片组成,分为六大类:健康牙齿、龋齿、阻生牙、感染、牙齿折断和牙冠/牙根折断(BDC/BDR)。这些图像来自孟加拉国达卡的三家知名私人诊所,由一名经验丰富的牙科医生协助收集,他使用 6400 万像素的安卓手机摄像头确保了患者的保密性和高质量的数据采集。为了提高数据集在机器学习和深度学习应用中的价值,我们应用了对比度受限自适应直方图均衡化(CLAHE)技术进行图像增强,并对数据进行了扩增。使用 CVAT 工具对图像进行了注释,并由牙科专家进行了审查。这个基准数据集是公开可用的,为人工智能、计算机科学和牙科信息学研究人员提供了宝贵的资源,促进了跨学科合作和牙科疾病检测先进算法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive dental dataset of six classes for deep learning based object detection study
This article presents a dental dataset for the improvement of research on deep learning-based detection and classification of dental diseases. The dataset is consisted of 232 panoramic dental radiographs, categorized into six major classes: healthy teeth, caries, impacted teeth, infections, fractured teeth, and broken-down crowns/roots (BDC/BDR). The images were collected from three renowned private clinics in Dhaka, Bangladesh, with the help of an experienced dental practitioner who ensured the confidentiality of patients and high-quality data acquisition using a 64-megapixel Android phone camera. To enhance the value of the dataset for machine and deep learning applications, we applied Contrast-Limited Adaptive Histogram Equalization (CLAHE) for image enhancement and augmented the data. The images were annotated using the CVAT tool and reviewed by dental experts. This benchmark dataset is publicly available and provides a valuable resource for researchers in artificial intelligence, computer science, and dental informatics to promote interdisciplinary collaboration and the development of advanced algorithms for dental disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Dataset of dendrometer and environmental parameter measurements of two different species of the group of genera known as eucalypts in South Africa and Portugal Bulk mRNA-sequencing data of the estrogen and androgen responses in the human prostate cancer cell line VCaP A refined spirometry dataset for comparing segmented (piecewise) linear models to that of GAMLSS Shotgun metagenomics sequencing data of root microbial community of Huanglongbing-infected Citrus nobilis BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1