{"title":"通过优化芳香族氨基酸的立体阵列同位素标记,加强大分子蛋白质的溶液结构分析","authors":"Yohei Miyanoiri , Mitsuhiro Takeda , Kosuke Okuma , Tsutomu Terauchi , Masatsune Kainosho","doi":"10.1016/j.bpc.2024.107328","DOIUrl":null,"url":null,"abstract":"<div><div>The observation of side-chain peaks of aromatic amino acids is the prerequisite for a high-resolution three-dimensional structure determination of proteins by NMR. However, it becomes difficult with increasing molecular size due to an increased transverse relaxation and the control of the relaxation pathway is needed to achieve the observation. We demonstrated that even for the large molecular size of 82 kDa Malate synthase G (MSG), the aromatic <sup>13</sup>C-<sup>1</sup>H (CH) peaks of Tryptophan (Trp) and Phenylalanine (Phe) residues can be observed with high quality using a systematic stable isotope labeling scheme, Stereo-Array Isotope Labeling (SAIL) method. However, the sequence specific assignments of these peaks relied on the use of amino acid substitutions, employing an inefficient method that required many isotopes labeled samples. In this study, we developed novel SAIL amino acids that allow for the observation of the aromatic ring <em>δ</em>,ζ and the aliphatic β position peak of Phe residues. The application of TROSY-based experiment to the isolated CH moieties resulted in the successful observation of discernible and resolved CH peaks in Phe residues in MSG. In MSG, the sequence-specific assignments of the backbone and C<sub>β</sub> positions have already been confirmed. Therefore, using this labeling method, the <em>δ</em> and β position peaks of Phe residues can be clearly assigned in a sequence-specific and stereospecific manner through experiments based on intra-residue NOE. Furthermore, the NOESY experiment also allows for the acquisition of information pertaining to the conformation of Phe residues, such as the χ1 dihedral angle, providing valuable insights for the determination of accurate protein structures and in dynamic analysis. This new SAIL amino acids open an avenue to achieve a variety of NMR analysis of large molecular proteins, including a high-resolution structure determination and dynamics and interaction analysis.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"315 ","pages":"Article 107328"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing solution structural analysis of large molecular proteins through optimal stereo array isotope labeling of aromatic amino acids\",\"authors\":\"Yohei Miyanoiri , Mitsuhiro Takeda , Kosuke Okuma , Tsutomu Terauchi , Masatsune Kainosho\",\"doi\":\"10.1016/j.bpc.2024.107328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The observation of side-chain peaks of aromatic amino acids is the prerequisite for a high-resolution three-dimensional structure determination of proteins by NMR. However, it becomes difficult with increasing molecular size due to an increased transverse relaxation and the control of the relaxation pathway is needed to achieve the observation. We demonstrated that even for the large molecular size of 82 kDa Malate synthase G (MSG), the aromatic <sup>13</sup>C-<sup>1</sup>H (CH) peaks of Tryptophan (Trp) and Phenylalanine (Phe) residues can be observed with high quality using a systematic stable isotope labeling scheme, Stereo-Array Isotope Labeling (SAIL) method. However, the sequence specific assignments of these peaks relied on the use of amino acid substitutions, employing an inefficient method that required many isotopes labeled samples. In this study, we developed novel SAIL amino acids that allow for the observation of the aromatic ring <em>δ</em>,ζ and the aliphatic β position peak of Phe residues. The application of TROSY-based experiment to the isolated CH moieties resulted in the successful observation of discernible and resolved CH peaks in Phe residues in MSG. In MSG, the sequence-specific assignments of the backbone and C<sub>β</sub> positions have already been confirmed. Therefore, using this labeling method, the <em>δ</em> and β position peaks of Phe residues can be clearly assigned in a sequence-specific and stereospecific manner through experiments based on intra-residue NOE. Furthermore, the NOESY experiment also allows for the acquisition of information pertaining to the conformation of Phe residues, such as the χ1 dihedral angle, providing valuable insights for the determination of accurate protein structures and in dynamic analysis. This new SAIL amino acids open an avenue to achieve a variety of NMR analysis of large molecular proteins, including a high-resolution structure determination and dynamics and interaction analysis.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"315 \",\"pages\":\"Article 107328\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224001571\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001571","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enhancing solution structural analysis of large molecular proteins through optimal stereo array isotope labeling of aromatic amino acids
The observation of side-chain peaks of aromatic amino acids is the prerequisite for a high-resolution three-dimensional structure determination of proteins by NMR. However, it becomes difficult with increasing molecular size due to an increased transverse relaxation and the control of the relaxation pathway is needed to achieve the observation. We demonstrated that even for the large molecular size of 82 kDa Malate synthase G (MSG), the aromatic 13C-1H (CH) peaks of Tryptophan (Trp) and Phenylalanine (Phe) residues can be observed with high quality using a systematic stable isotope labeling scheme, Stereo-Array Isotope Labeling (SAIL) method. However, the sequence specific assignments of these peaks relied on the use of amino acid substitutions, employing an inefficient method that required many isotopes labeled samples. In this study, we developed novel SAIL amino acids that allow for the observation of the aromatic ring δ,ζ and the aliphatic β position peak of Phe residues. The application of TROSY-based experiment to the isolated CH moieties resulted in the successful observation of discernible and resolved CH peaks in Phe residues in MSG. In MSG, the sequence-specific assignments of the backbone and Cβ positions have already been confirmed. Therefore, using this labeling method, the δ and β position peaks of Phe residues can be clearly assigned in a sequence-specific and stereospecific manner through experiments based on intra-residue NOE. Furthermore, the NOESY experiment also allows for the acquisition of information pertaining to the conformation of Phe residues, such as the χ1 dihedral angle, providing valuable insights for the determination of accurate protein structures and in dynamic analysis. This new SAIL amino acids open an avenue to achieve a variety of NMR analysis of large molecular proteins, including a high-resolution structure determination and dynamics and interaction analysis.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.