{"title":"基于替代材料的板式燃料熔化行为实验研究","authors":"Zhiyuan Wu, Kepiao Li, Kui Zhang, Ronghua Chen, Wenxi Tian, Suizheng Qiu","doi":"10.1016/j.anucene.2024.110941","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, low-temperature experiments are carried out on the visualized experimental device to study the melting behavior of plate-type fuel in severe accidents of the reactor. In the experiments, the plate-type fuel with different sizes made of nickel–chromium alloy, zinc and aluminum was used to carry out the visualized experiments in air, argon, and vacuum environment. It was found that both the size of the plate and the experimental environment have a significant influence on the melting behavior in this study. And the temperature distribution, melting behavior characteristic, the key parameters such as blistering position, blistering size, breaking position and breaking size were also obtained. Based on the experimental data, the physical phenomena and processes related to the blistering and melting of the fuel plates are analyzed in this paper, which provides experimental data support for the development of analysis model and formulating perfect mitigation strategies for severe accidents.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the plate-type fuel melting behavior based on alternative materials\",\"authors\":\"Zhiyuan Wu, Kepiao Li, Kui Zhang, Ronghua Chen, Wenxi Tian, Suizheng Qiu\",\"doi\":\"10.1016/j.anucene.2024.110941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, low-temperature experiments are carried out on the visualized experimental device to study the melting behavior of plate-type fuel in severe accidents of the reactor. In the experiments, the plate-type fuel with different sizes made of nickel–chromium alloy, zinc and aluminum was used to carry out the visualized experiments in air, argon, and vacuum environment. It was found that both the size of the plate and the experimental environment have a significant influence on the melting behavior in this study. And the temperature distribution, melting behavior characteristic, the key parameters such as blistering position, blistering size, breaking position and breaking size were also obtained. Based on the experimental data, the physical phenomena and processes related to the blistering and melting of the fuel plates are analyzed in this paper, which provides experimental data support for the development of analysis model and formulating perfect mitigation strategies for severe accidents.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006042\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Experimental study on the plate-type fuel melting behavior based on alternative materials
In this paper, low-temperature experiments are carried out on the visualized experimental device to study the melting behavior of plate-type fuel in severe accidents of the reactor. In the experiments, the plate-type fuel with different sizes made of nickel–chromium alloy, zinc and aluminum was used to carry out the visualized experiments in air, argon, and vacuum environment. It was found that both the size of the plate and the experimental environment have a significant influence on the melting behavior in this study. And the temperature distribution, melting behavior characteristic, the key parameters such as blistering position, blistering size, breaking position and breaking size were also obtained. Based on the experimental data, the physical phenomena and processes related to the blistering and melting of the fuel plates are analyzed in this paper, which provides experimental data support for the development of analysis model and formulating perfect mitigation strategies for severe accidents.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.