50.TAGVar:用于注释基因组变异以便临床审查的简单、免费软件工具

IF 1.4 4区 医学 Q4 GENETICS & HEREDITY Cancer Genetics Pub Date : 2024-08-01 DOI:10.1016/j.cancergen.2024.08.052
Matthew Croken, Olga Lukatskaya
{"title":"50.TAGVar:用于注释基因组变异以便临床审查的简单、免费软件工具","authors":"Matthew Croken,&nbsp;Olga Lukatskaya","doi":"10.1016/j.cancergen.2024.08.052","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive and whole exome NGS panels can generate large amounts of genomic information for a single specimen. This makes these approaches very powerful, however converting raw signals from the NGS instrument into actionable, clinical information requires specialized data pipelines. The expense and expertise required to deploy these pipelines may place NGS testing out of reach for clinics and research groups in low resource settings. TAGVar (Tertiary Analysis of Genomic Variants) is a freely available software tool that facilitates somatic variant classification in both the clinical and research contexts. The application takes VCF formatted genomic variants and outputs HGVS annotations, predicted effect, and links to external variant databases, like dbSNP, gnomAD, ClinVar, COSMIC, and CancerHotspots.org. TAGVar sorts and categorizes variants based on read coverage, variant allele frequency, inferred transcript effect, description in somatic variant databases, or presence in known cancer-related genes as well as additional user-defined criteria. In the clinic, these classifications streamline the identification of reportable variants. In research, the same classification scheme identifies known and novel somatic variants associated with disease. TAGVar has relatively low memory and CPU requirements and does not require a stable internet connection to run. These design features make TAGVar ideal for use in low resource settings.</div></div>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"50. TAGVar: A simple, free software tool to annotate genomic variants for clinical review\",\"authors\":\"Matthew Croken,&nbsp;Olga Lukatskaya\",\"doi\":\"10.1016/j.cancergen.2024.08.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Comprehensive and whole exome NGS panels can generate large amounts of genomic information for a single specimen. This makes these approaches very powerful, however converting raw signals from the NGS instrument into actionable, clinical information requires specialized data pipelines. The expense and expertise required to deploy these pipelines may place NGS testing out of reach for clinics and research groups in low resource settings. TAGVar (Tertiary Analysis of Genomic Variants) is a freely available software tool that facilitates somatic variant classification in both the clinical and research contexts. The application takes VCF formatted genomic variants and outputs HGVS annotations, predicted effect, and links to external variant databases, like dbSNP, gnomAD, ClinVar, COSMIC, and CancerHotspots.org. TAGVar sorts and categorizes variants based on read coverage, variant allele frequency, inferred transcript effect, description in somatic variant databases, or presence in known cancer-related genes as well as additional user-defined criteria. In the clinic, these classifications streamline the identification of reportable variants. In research, the same classification scheme identifies known and novel somatic variants associated with disease. TAGVar has relatively low memory and CPU requirements and does not require a stable internet connection to run. These design features make TAGVar ideal for use in low resource settings.</div></div>\",\"PeriodicalId\":49225,\"journal\":{\"name\":\"Cancer Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210776224000905\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210776224000905","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

综合和全外显子组 NGS 面板可为单个标本生成大量基因组信息。这使得这些方法非常强大,但将 NGS 仪器的原始信号转换为可操作的临床信息需要专门的数据管道。部署这些管道所需的费用和专业知识可能会使资源匮乏的诊所和研究小组无法进行 NGS 检测。TAGVar(基因组变异的三级分析)是一款免费提供的软件工具,有助于临床和研究中的体细胞变异分类。该应用程序采用 VCF 格式的基因组变异,输出 HGVS 注释、预测效应以及外部变异数据库链接,如 dbSNP、gnomAD、ClinVar、COSMIC 和 CancerHotspots.org。TAGVar 根据读取覆盖率、变异等位基因频率、推断转录本效应、体细胞变异数据库中的描述、已知癌症相关基因中的存在情况以及用户自定义的其他标准对变异进行排序和分类。在临床中,这些分类简化了可报告变异的鉴定。在研究中,同样的分类方案可识别与疾病相关的已知和新型体细胞变异。TAGVar 对内存和 CPU 的要求相对较低,运行时不需要稳定的互联网连接。这些设计特点使 TAGVar 非常适合在资源匮乏的环境中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
50. TAGVar: A simple, free software tool to annotate genomic variants for clinical review
Comprehensive and whole exome NGS panels can generate large amounts of genomic information for a single specimen. This makes these approaches very powerful, however converting raw signals from the NGS instrument into actionable, clinical information requires specialized data pipelines. The expense and expertise required to deploy these pipelines may place NGS testing out of reach for clinics and research groups in low resource settings. TAGVar (Tertiary Analysis of Genomic Variants) is a freely available software tool that facilitates somatic variant classification in both the clinical and research contexts. The application takes VCF formatted genomic variants and outputs HGVS annotations, predicted effect, and links to external variant databases, like dbSNP, gnomAD, ClinVar, COSMIC, and CancerHotspots.org. TAGVar sorts and categorizes variants based on read coverage, variant allele frequency, inferred transcript effect, description in somatic variant databases, or presence in known cancer-related genes as well as additional user-defined criteria. In the clinic, these classifications streamline the identification of reportable variants. In research, the same classification scheme identifies known and novel somatic variants associated with disease. TAGVar has relatively low memory and CPU requirements and does not require a stable internet connection to run. These design features make TAGVar ideal for use in low resource settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Genetics
Cancer Genetics ONCOLOGY-GENETICS & HEREDITY
CiteScore
3.20
自引率
5.30%
发文量
167
审稿时长
27 days
期刊介绍: The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.
期刊最新文献
Identification and characterization of ADAR1 mutations and changes in gene expression in human cancers Recurrent cytogenetic abnormalities reveal alterations that promote progression and transformation in myelodysplastic syndrome Potential use of SCAT1, SCAT2, and SCAT8 as diagnostic and prognosis markers in colorectal cancer Elucidating the prognostic and therapeutic significance of TOP2A in various malignancies Influence of polymorphisms on the phenotype of TLR1, TLR4 and TLR9 genes and their association with cervical cancer: Bioinformatics prediction analysis and a case-control study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1