76.新抗原癌症疫苗设计的免疫基因组肿瘤委员会决策自动化

IF 1.4 4区 医学 Q4 GENETICS & HEREDITY Cancer Genetics Pub Date : 2024-08-01 DOI:10.1016/j.cancergen.2024.08.078
Jennie Yao , Kartik Singhal , Susanna Kiwala , Peter Goedegebuure , Christopher Miller , Huiming Xia , My Hoang , Mariam Khanfar , Kelsy Cotto , Sherri Davies , Feiyu Du , Evelyn Schmidt , Gue Su Chang , Jasreet Hundal , Jeffrey Ward , William Inabinett , William Hoos , William Gillanders , Obi Griffith , Malachi Griffith
{"title":"76.新抗原癌症疫苗设计的免疫基因组肿瘤委员会决策自动化","authors":"Jennie Yao ,&nbsp;Kartik Singhal ,&nbsp;Susanna Kiwala ,&nbsp;Peter Goedegebuure ,&nbsp;Christopher Miller ,&nbsp;Huiming Xia ,&nbsp;My Hoang ,&nbsp;Mariam Khanfar ,&nbsp;Kelsy Cotto ,&nbsp;Sherri Davies ,&nbsp;Feiyu Du ,&nbsp;Evelyn Schmidt ,&nbsp;Gue Su Chang ,&nbsp;Jasreet Hundal ,&nbsp;Jeffrey Ward ,&nbsp;William Inabinett ,&nbsp;William Hoos ,&nbsp;William Gillanders ,&nbsp;Obi Griffith ,&nbsp;Malachi Griffith","doi":"10.1016/j.cancergen.2024.08.078","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in immunogenomics and immuno-oncology have enabled the development of neoantigen vaccines, offering personalized cancer therapies by targeting cancer cell-specific somatic mutations. These mutations produce neoantigens that, when presented on tumor cells by MHC molecules, can elicit a robust and specific immune response. To date, there are 108 interventional studies listed on clinicaltrials.gov that explore the use of cancer vaccines. We have supported a number of these trials through the creation of bioinformatic pipelines, tools and procedures for the identification of patient-specific neoantigen candidates. Final prioritization of neoantigen candidates relies on manual review by an Immunogenomics Tumor Board (ITB) that meets weekly, increasing turnaround time and presenting a barrier to scaling.</div><div>Addressing this challenge, we introduce a machine learning-based approach to automate the selection of neoantigens peptides. We implemented a random forest model to train and test on existing ITB results from 21 patients and 1,324 peptides, including 297 peptides prioritized for personalized vaccine inclusion. This model aims to use features such as mutation position, driver gene status, tumor variant allele frequency, RNA expression, and other features to automatically predict whether a peptide will be accepted, rejected, or require further review for the vaccine. The model achieved an 88.89% sensitivity and 86.4% specificity, with an area under the curve of 0.933. By integrating this model into the vaccine development pipeline, we foresee a significant reduction in the time required to transition from patient sample collection to vaccine manufacturing, thereby enhancing the efficiency and scalability of personalized cancer vaccine production.</div></div>","PeriodicalId":49225,"journal":{"name":"Cancer Genetics","volume":"286 ","pages":"Page S24"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"76. Automating immunogenomic tumor board decision-making for neoantigen cancer vaccine design\",\"authors\":\"Jennie Yao ,&nbsp;Kartik Singhal ,&nbsp;Susanna Kiwala ,&nbsp;Peter Goedegebuure ,&nbsp;Christopher Miller ,&nbsp;Huiming Xia ,&nbsp;My Hoang ,&nbsp;Mariam Khanfar ,&nbsp;Kelsy Cotto ,&nbsp;Sherri Davies ,&nbsp;Feiyu Du ,&nbsp;Evelyn Schmidt ,&nbsp;Gue Su Chang ,&nbsp;Jasreet Hundal ,&nbsp;Jeffrey Ward ,&nbsp;William Inabinett ,&nbsp;William Hoos ,&nbsp;William Gillanders ,&nbsp;Obi Griffith ,&nbsp;Malachi Griffith\",\"doi\":\"10.1016/j.cancergen.2024.08.078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in immunogenomics and immuno-oncology have enabled the development of neoantigen vaccines, offering personalized cancer therapies by targeting cancer cell-specific somatic mutations. These mutations produce neoantigens that, when presented on tumor cells by MHC molecules, can elicit a robust and specific immune response. To date, there are 108 interventional studies listed on clinicaltrials.gov that explore the use of cancer vaccines. We have supported a number of these trials through the creation of bioinformatic pipelines, tools and procedures for the identification of patient-specific neoantigen candidates. Final prioritization of neoantigen candidates relies on manual review by an Immunogenomics Tumor Board (ITB) that meets weekly, increasing turnaround time and presenting a barrier to scaling.</div><div>Addressing this challenge, we introduce a machine learning-based approach to automate the selection of neoantigens peptides. We implemented a random forest model to train and test on existing ITB results from 21 patients and 1,324 peptides, including 297 peptides prioritized for personalized vaccine inclusion. This model aims to use features such as mutation position, driver gene status, tumor variant allele frequency, RNA expression, and other features to automatically predict whether a peptide will be accepted, rejected, or require further review for the vaccine. The model achieved an 88.89% sensitivity and 86.4% specificity, with an area under the curve of 0.933. By integrating this model into the vaccine development pipeline, we foresee a significant reduction in the time required to transition from patient sample collection to vaccine manufacturing, thereby enhancing the efficiency and scalability of personalized cancer vaccine production.</div></div>\",\"PeriodicalId\":49225,\"journal\":{\"name\":\"Cancer Genetics\",\"volume\":\"286 \",\"pages\":\"Page S24\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210776224001169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210776224001169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

免疫基因组学和免疫肿瘤学的进步促进了新抗原疫苗的开发,通过靶向癌细胞特异性体细胞突变提供个性化癌症疗法。这些突变产生的新抗原通过 MHC 分子呈现在肿瘤细胞上时,可引起强大的特异性免疫反应。迄今为止,clinicaltrials.gov 上已列出 108 项探索癌症疫苗应用的干预性研究。我们通过创建生物信息学管道、工具和程序来识别患者特异性新抗原候选物,从而为其中一些试验提供了支持。新抗原候选物的最终优先排序依赖于免疫组学肿瘤委员会(ITB)的人工审核,该委员会每周召开一次会议,这增加了周转时间,也阻碍了规模的扩大。我们采用随机森林模型对来自 21 名患者和 1,324 个肽段的现有 ITB 结果进行训练和测试,其中包括优先纳入个性化疫苗的 297 个肽段。该模型旨在利用突变位置、驱动基因状态、肿瘤变异等位基因频率、RNA表达等特征,自动预测疫苗是否接受、拒绝或需要进一步审查多肽。该模型的灵敏度为 88.89%,特异度为 86.4%,曲线下面积为 0.933。通过将该模型集成到疫苗开发流水线中,我们预计从患者样本采集到疫苗生产所需的时间将大大缩短,从而提高个性化癌症疫苗生产的效率和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
76. Automating immunogenomic tumor board decision-making for neoantigen cancer vaccine design
Advancements in immunogenomics and immuno-oncology have enabled the development of neoantigen vaccines, offering personalized cancer therapies by targeting cancer cell-specific somatic mutations. These mutations produce neoantigens that, when presented on tumor cells by MHC molecules, can elicit a robust and specific immune response. To date, there are 108 interventional studies listed on clinicaltrials.gov that explore the use of cancer vaccines. We have supported a number of these trials through the creation of bioinformatic pipelines, tools and procedures for the identification of patient-specific neoantigen candidates. Final prioritization of neoantigen candidates relies on manual review by an Immunogenomics Tumor Board (ITB) that meets weekly, increasing turnaround time and presenting a barrier to scaling.
Addressing this challenge, we introduce a machine learning-based approach to automate the selection of neoantigens peptides. We implemented a random forest model to train and test on existing ITB results from 21 patients and 1,324 peptides, including 297 peptides prioritized for personalized vaccine inclusion. This model aims to use features such as mutation position, driver gene status, tumor variant allele frequency, RNA expression, and other features to automatically predict whether a peptide will be accepted, rejected, or require further review for the vaccine. The model achieved an 88.89% sensitivity and 86.4% specificity, with an area under the curve of 0.933. By integrating this model into the vaccine development pipeline, we foresee a significant reduction in the time required to transition from patient sample collection to vaccine manufacturing, thereby enhancing the efficiency and scalability of personalized cancer vaccine production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Genetics
Cancer Genetics ONCOLOGY-GENETICS & HEREDITY
CiteScore
3.20
自引率
5.30%
发文量
167
审稿时长
27 days
期刊介绍: The aim of Cancer Genetics is to publish high quality scientific papers on the cellular, genetic and molecular aspects of cancer, including cancer predisposition and clinical diagnostic applications. Specific areas of interest include descriptions of new chromosomal, molecular or epigenetic alterations in benign and malignant diseases; novel laboratory approaches for identification and characterization of chromosomal rearrangements or genomic alterations in cancer cells; correlation of genetic changes with pathology and clinical presentation; and the molecular genetics of cancer predisposition. To reach a basic science and clinical multidisciplinary audience, we welcome original full-length articles, reviews, meeting summaries, brief reports, and letters to the editor.
期刊最新文献
False positive NUP98 fluorescence in situ hybridization rearrangements in B-acute lymphoblastic leukemia. Hepatoblastoma in a patient with neurofibromatosis type 1: A case report. A novel POT1-TPD presentation: A germline pathogenic POT1 variant discovered in a patient with newly diagnosed posterior fossa ependymoma. Exploring the role of transcription factor TWIST1 in bladder cancer progression. In silico protein structural analysis of PRMT5 and RUVBL1 mutations arising in human cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1