Shihao Li , Bojian Zhou , Ting Wang , Cheng Cheng , Min Xu
{"title":"不确定异常信息对带有 V2V 通信功能的自动驾驶汽车交通流的影响","authors":"Shihao Li , Bojian Zhou , Ting Wang , Cheng Cheng , Min Xu","doi":"10.1016/j.physa.2024.130107","DOIUrl":null,"url":null,"abstract":"<div><div>Automated vehicles (AVs) equipped with vehicle-to-vehicle (V2V) communication can operate by sensing real-time status information through onboard sensors and wireless connections. Nevertheless, under the influence of multifarious random factors in real traffic, this critical information that support the normal movement of such vehicles may be anomalous, raising concerns on their mobility and traffic security. Due to the lack of appropriate analytical model, previous studies have not comprehensively uncovered the effects of uncertain anomalous information on traffic flow of AVs with V2V communication. Therefore, this study aims to bridge this critical gap. Firstly, by introducing a probabilistic parameter (i.e., information anomaly probability), we propose a general model that integrates the normal and compromised models, thereby capturing the longitudinal dynamics of AVs featuring V2V communication in the presence of uncertain anomalous information. To enable the detailed theoretical and experimental analyses, we specify it through the cooperative adaptive cruise control model calibrated with real-car data. Subsequently, we define the concept of pseudo string stability and parameterize the stability condition based on the characteristic equation method, so as to demonstrate the relationship between traffic flow stability and the parameters and probability of information anomaly. Finally, we refine the proposed probabilistic model and conduct extensive numerical experiments. The findings show that uncertain anomalous information could result in sudden or even frequent acceleration and deceleration of AVs, causing traffic oscillation, reduced traffic efficiency, and even collision accidents. In particular, the greater the information anomaly probability, the larger the disturbances experienced by traffic flow. Meanwhile, at the same level of anomaly, the combined impacts of various anomalous information could lead to more severe consequences than the singular impact of any individual anomalous information. Furthermore, the duration of anomalous information directly affects the time it takes for traffic flow to return to normal.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"653 ","pages":"Article 130107"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of uncertain anomalous information on traffic flow of automated vehicles with V2V communication\",\"authors\":\"Shihao Li , Bojian Zhou , Ting Wang , Cheng Cheng , Min Xu\",\"doi\":\"10.1016/j.physa.2024.130107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated vehicles (AVs) equipped with vehicle-to-vehicle (V2V) communication can operate by sensing real-time status information through onboard sensors and wireless connections. Nevertheless, under the influence of multifarious random factors in real traffic, this critical information that support the normal movement of such vehicles may be anomalous, raising concerns on their mobility and traffic security. Due to the lack of appropriate analytical model, previous studies have not comprehensively uncovered the effects of uncertain anomalous information on traffic flow of AVs with V2V communication. Therefore, this study aims to bridge this critical gap. Firstly, by introducing a probabilistic parameter (i.e., information anomaly probability), we propose a general model that integrates the normal and compromised models, thereby capturing the longitudinal dynamics of AVs featuring V2V communication in the presence of uncertain anomalous information. To enable the detailed theoretical and experimental analyses, we specify it through the cooperative adaptive cruise control model calibrated with real-car data. Subsequently, we define the concept of pseudo string stability and parameterize the stability condition based on the characteristic equation method, so as to demonstrate the relationship between traffic flow stability and the parameters and probability of information anomaly. Finally, we refine the proposed probabilistic model and conduct extensive numerical experiments. The findings show that uncertain anomalous information could result in sudden or even frequent acceleration and deceleration of AVs, causing traffic oscillation, reduced traffic efficiency, and even collision accidents. In particular, the greater the information anomaly probability, the larger the disturbances experienced by traffic flow. Meanwhile, at the same level of anomaly, the combined impacts of various anomalous information could lead to more severe consequences than the singular impact of any individual anomalous information. Furthermore, the duration of anomalous information directly affects the time it takes for traffic flow to return to normal.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"653 \",\"pages\":\"Article 130107\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006162\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006162","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of uncertain anomalous information on traffic flow of automated vehicles with V2V communication
Automated vehicles (AVs) equipped with vehicle-to-vehicle (V2V) communication can operate by sensing real-time status information through onboard sensors and wireless connections. Nevertheless, under the influence of multifarious random factors in real traffic, this critical information that support the normal movement of such vehicles may be anomalous, raising concerns on their mobility and traffic security. Due to the lack of appropriate analytical model, previous studies have not comprehensively uncovered the effects of uncertain anomalous information on traffic flow of AVs with V2V communication. Therefore, this study aims to bridge this critical gap. Firstly, by introducing a probabilistic parameter (i.e., information anomaly probability), we propose a general model that integrates the normal and compromised models, thereby capturing the longitudinal dynamics of AVs featuring V2V communication in the presence of uncertain anomalous information. To enable the detailed theoretical and experimental analyses, we specify it through the cooperative adaptive cruise control model calibrated with real-car data. Subsequently, we define the concept of pseudo string stability and parameterize the stability condition based on the characteristic equation method, so as to demonstrate the relationship between traffic flow stability and the parameters and probability of information anomaly. Finally, we refine the proposed probabilistic model and conduct extensive numerical experiments. The findings show that uncertain anomalous information could result in sudden or even frequent acceleration and deceleration of AVs, causing traffic oscillation, reduced traffic efficiency, and even collision accidents. In particular, the greater the information anomaly probability, the larger the disturbances experienced by traffic flow. Meanwhile, at the same level of anomaly, the combined impacts of various anomalous information could lead to more severe consequences than the singular impact of any individual anomalous information. Furthermore, the duration of anomalous information directly affects the time it takes for traffic flow to return to normal.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.