{"title":"异质结硅太阳能电池选择性接触钝化技术的进展","authors":"Yu Zhang , Tingshu Shi , Leiping Duan , Bram Hoex , Zeguo Tang","doi":"10.1016/j.nanoen.2024.110282","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic (PV) technology, particularly silicon solar cells (SSCs), has emerged as a key player in meeting this demand due to its mature technology, prolonged stability, non-toxicity, and material abundance. Heterojunction (HJT) solar cells have shown significant promise by eliminating dopant-diffusion processes and separating c-Si wafers from metal contacts. In recent years, the notable enhancement in the record PCE of SSCs primarily hinges on advancements in HJT technology, incorporating sophisticated passivating selective contacts. This review explores the evolution and recent progress of passivating selective contacts in HJT solar cells, examining doped silicon-based materials, metal compounds, and organic materials. Despite dopant-free contacts still lagging in efficiency, their potential for high fill factor (FF) values suggests viable pathways for future research. This study aims to provide a comprehensive overview, highlighting key advancements, challenges, and prospects in the ongoing development of HJT technology for higher performance, enhanced stability, and reduced costs.</div></div>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in passivating selective contacts for heterojunction silicon solar cells\",\"authors\":\"Yu Zhang , Tingshu Shi , Leiping Duan , Bram Hoex , Zeguo Tang\",\"doi\":\"10.1016/j.nanoen.2024.110282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photovoltaic (PV) technology, particularly silicon solar cells (SSCs), has emerged as a key player in meeting this demand due to its mature technology, prolonged stability, non-toxicity, and material abundance. Heterojunction (HJT) solar cells have shown significant promise by eliminating dopant-diffusion processes and separating c-Si wafers from metal contacts. In recent years, the notable enhancement in the record PCE of SSCs primarily hinges on advancements in HJT technology, incorporating sophisticated passivating selective contacts. This review explores the evolution and recent progress of passivating selective contacts in HJT solar cells, examining doped silicon-based materials, metal compounds, and organic materials. Despite dopant-free contacts still lagging in efficiency, their potential for high fill factor (FF) values suggests viable pathways for future research. This study aims to provide a comprehensive overview, highlighting key advancements, challenges, and prospects in the ongoing development of HJT technology for higher performance, enhanced stability, and reduced costs.</div></div>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524010346\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524010346","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Progress in passivating selective contacts for heterojunction silicon solar cells
Photovoltaic (PV) technology, particularly silicon solar cells (SSCs), has emerged as a key player in meeting this demand due to its mature technology, prolonged stability, non-toxicity, and material abundance. Heterojunction (HJT) solar cells have shown significant promise by eliminating dopant-diffusion processes and separating c-Si wafers from metal contacts. In recent years, the notable enhancement in the record PCE of SSCs primarily hinges on advancements in HJT technology, incorporating sophisticated passivating selective contacts. This review explores the evolution and recent progress of passivating selective contacts in HJT solar cells, examining doped silicon-based materials, metal compounds, and organic materials. Despite dopant-free contacts still lagging in efficiency, their potential for high fill factor (FF) values suggests viable pathways for future research. This study aims to provide a comprehensive overview, highlighting key advancements, challenges, and prospects in the ongoing development of HJT technology for higher performance, enhanced stability, and reduced costs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.