Jingwei Shi, Rusong Yang, Xinyi Jiang, Kangle Zhu, Zhengcheng Liu
{"title":"检测肺腺癌中的脂肪酸代谢相关基因,作为临床预后和免疫治疗靶点的生物标记物","authors":"Jingwei Shi, Rusong Yang, Xinyi Jiang, Kangle Zhu, Zhengcheng Liu","doi":"10.1111/crj.70013","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Lung cancer, on a global scale, leads to the most common cases of cancer mortalities. Novel therapeutic approaches are urgently needed to disrupt this lethal disease. The rapid development of tumor immunology combining breakthroughs involving fatty acid metabolism brings possibilities. Directing fatty acid metabolism is supposed to help discover potential prognostic biomarkers and treatment targets for lung cancer.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Through searching the GSE140797 dataset, we identified genes related to fatty acid metabolism as well as fatty acid metabolism-related differentially expressed genes (DEGs). We applied various methods to ascertain the independent prognostic value of the DEGs. The methods we utilized entail prognostic analysis, differential expression analysis, as well as univariate and multivariate Cox regression analyses. The lasso Cox regression model was utilized in examining how DEGs correlate with the immune score, immune checkpoint, ferroptosis, methylation, and OCLR score. The expression levels of ACAT1 and ACSL3 in tissues derived from normal lung and lung adenocarcinoma (LUAD) tissues were compared by qRT-PCR.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In this study, ACSL3 and ACAT1 were identified as fatty acid metabolism-related genes utilizing independent prognostic value and as a result, the risk prognostic model was built using these factors. qRT-PCR results implied that ACSL3 and ACAT1 expressions were upregulated and downregulated, correspondingly in tumor tissues. Additional evaluations suggested that ACSL3 and ACAT1 were affirmed to be remarkably correlated with the immune score, methylation, immune checkpoint, OCLR score, and ferroptosis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>ACSL3 and ACAT1 were effective prognostic biomarkers and potential immunotherapeutic targets in LUAD.</p>\n </section>\n </div>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 10","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/crj.70013","citationCount":"0","resultStr":"{\"title\":\"Detection of the Fatty Acid Metabolism-Linked Genes in Lung Adenocarcinoma as Biomarkers for Clinical Prognosis and Immunotherapeutic Targets\",\"authors\":\"Jingwei Shi, Rusong Yang, Xinyi Jiang, Kangle Zhu, Zhengcheng Liu\",\"doi\":\"10.1111/crj.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Lung cancer, on a global scale, leads to the most common cases of cancer mortalities. Novel therapeutic approaches are urgently needed to disrupt this lethal disease. The rapid development of tumor immunology combining breakthroughs involving fatty acid metabolism brings possibilities. Directing fatty acid metabolism is supposed to help discover potential prognostic biomarkers and treatment targets for lung cancer.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Through searching the GSE140797 dataset, we identified genes related to fatty acid metabolism as well as fatty acid metabolism-related differentially expressed genes (DEGs). We applied various methods to ascertain the independent prognostic value of the DEGs. The methods we utilized entail prognostic analysis, differential expression analysis, as well as univariate and multivariate Cox regression analyses. The lasso Cox regression model was utilized in examining how DEGs correlate with the immune score, immune checkpoint, ferroptosis, methylation, and OCLR score. The expression levels of ACAT1 and ACSL3 in tissues derived from normal lung and lung adenocarcinoma (LUAD) tissues were compared by qRT-PCR.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In this study, ACSL3 and ACAT1 were identified as fatty acid metabolism-related genes utilizing independent prognostic value and as a result, the risk prognostic model was built using these factors. qRT-PCR results implied that ACSL3 and ACAT1 expressions were upregulated and downregulated, correspondingly in tumor tissues. Additional evaluations suggested that ACSL3 and ACAT1 were affirmed to be remarkably correlated with the immune score, methylation, immune checkpoint, OCLR score, and ferroptosis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>ACSL3 and ACAT1 were effective prognostic biomarkers and potential immunotherapeutic targets in LUAD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":55247,\"journal\":{\"name\":\"Clinical Respiratory Journal\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/crj.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Respiratory Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/crj.70013\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Detection of the Fatty Acid Metabolism-Linked Genes in Lung Adenocarcinoma as Biomarkers for Clinical Prognosis and Immunotherapeutic Targets
Background
Lung cancer, on a global scale, leads to the most common cases of cancer mortalities. Novel therapeutic approaches are urgently needed to disrupt this lethal disease. The rapid development of tumor immunology combining breakthroughs involving fatty acid metabolism brings possibilities. Directing fatty acid metabolism is supposed to help discover potential prognostic biomarkers and treatment targets for lung cancer.
Methods
Through searching the GSE140797 dataset, we identified genes related to fatty acid metabolism as well as fatty acid metabolism-related differentially expressed genes (DEGs). We applied various methods to ascertain the independent prognostic value of the DEGs. The methods we utilized entail prognostic analysis, differential expression analysis, as well as univariate and multivariate Cox regression analyses. The lasso Cox regression model was utilized in examining how DEGs correlate with the immune score, immune checkpoint, ferroptosis, methylation, and OCLR score. The expression levels of ACAT1 and ACSL3 in tissues derived from normal lung and lung adenocarcinoma (LUAD) tissues were compared by qRT-PCR.
Results
In this study, ACSL3 and ACAT1 were identified as fatty acid metabolism-related genes utilizing independent prognostic value and as a result, the risk prognostic model was built using these factors. qRT-PCR results implied that ACSL3 and ACAT1 expressions were upregulated and downregulated, correspondingly in tumor tissues. Additional evaluations suggested that ACSL3 and ACAT1 were affirmed to be remarkably correlated with the immune score, methylation, immune checkpoint, OCLR score, and ferroptosis.
Conclusions
ACSL3 and ACAT1 were effective prognostic biomarkers and potential immunotherapeutic targets in LUAD.
期刊介绍:
Overview
Effective with the 2016 volume, this journal will be published in an online-only format.
Aims and Scope
The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic.
We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including:
Asthma
Allergy
COPD
Non-invasive ventilation
Sleep related breathing disorders
Interstitial lung diseases
Lung cancer
Clinical genetics
Rhinitis
Airway and lung infection
Epidemiology
Pediatrics
CRJ provides a fast-track service for selected Phase II and Phase III trial studies.
Keywords
Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease,
Abstracting and Indexing Information
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Embase (Elsevier)
Health & Medical Collection (ProQuest)
Health Research Premium Collection (ProQuest)
HEED: Health Economic Evaluations Database (Wiley-Blackwell)
Hospital Premium Collection (ProQuest)
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
ProQuest Central (ProQuest)
Science Citation Index Expanded (Clarivate Analytics)
SCOPUS (Elsevier)