Pablo Alvarez, Andre Velescu, Kerstin Pierick, Juergen Homeier, Wolfgang Wilcke
{"title":"利用溶解总氮的δ15N 值评估厄瓜多尔热带山地森林水路沿线生态系统溶液中氮的来源和吸收汇","authors":"Pablo Alvarez, Andre Velescu, Kerstin Pierick, Juergen Homeier, Wolfgang Wilcke","doi":"10.1029/2024JG008043","DOIUrl":null,"url":null,"abstract":"<p>The globally increasing reactive N richness affects even remote ecosystems such as the tropical montane forests in Ecuador. We tested whether the δ<sup>15</sup>N values of total dissolved N (TDN), measured directly in solution with a TOC-IRMS, can be used to help elucidate N sources and sinks along the water path and thus might be suitable for ecosystem monitoring. From 2013 to 2016, the δ<sup>15</sup>N values of TDN in bulk deposition showed the most pronounced temporal variation of all ecosystem solutions (δ<sup>15</sup>N values: 1.9–5.9‰). In throughfall (TF), TDN was on average <sup>15</sup>N-depleted (−1.8 ± s.d. 0.4‰) relative to rainfall (3.4 ± 0.9‰), resulting from net retention of isotopically heavy N, mainly as NH<sub>4</sub><sup>+</sup>. Simultaneously, N-isotopically light NO<sub>3</sub><sup>−</sup>-N and dissolved organic nitrogen (DON) with a δ<sup>15</sup>N value between NO<sub>3</sub><sup>−</sup>-N and NH<sub>4</sub><sup>+</sup>-N were leached from the canopy (leaves: −3.5 ± 0.5‰). The increasing δ<sup>15</sup>N values in the order, TF < stemflow (SF, 0.1 ± 0.6‰)< litter leachate (LL, 1.3 ± 0.7‰) concurred with an increasing DON contribution to TDN reflecting the δ<sup>15</sup>N value of the organic layer (1.9 ± 0.9‰). The lower δ<sup>15</sup>N value of the mineral soil solution at the 0.15 m soil depth (SS15, −1.5 ± 0.3‰) than in LL can be explained by the retention of DON and NH<sub>4</sub><sup>+</sup> and the addition of NO<sub>3</sub><sup>−</sup> from mineralization and nitrification. The increasing δ<sup>15</sup>N values in the order, SS15 < SS30 (−0.6 ± 0.2‰) < streamflow (ST, 0.5 ± 0.6‰) suggested gaseous N losses because of increasing denitrification. There was no seasonality of the δ<sup>15</sup>N values. Our results demonstrate that the δ<sup>15</sup>N values of TDN in ecosystem solutions help identify N sources and sinks in forest ecosystems.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008043","citationCount":"0","resultStr":"{\"title\":\"Sources and Sinks of N in Ecosystem Solutions Along the Water Path Through a Tropical Montane Forest in Ecuador Assessed With δ15N Values of Total Dissolved Nitrogen\",\"authors\":\"Pablo Alvarez, Andre Velescu, Kerstin Pierick, Juergen Homeier, Wolfgang Wilcke\",\"doi\":\"10.1029/2024JG008043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The globally increasing reactive N richness affects even remote ecosystems such as the tropical montane forests in Ecuador. We tested whether the δ<sup>15</sup>N values of total dissolved N (TDN), measured directly in solution with a TOC-IRMS, can be used to help elucidate N sources and sinks along the water path and thus might be suitable for ecosystem monitoring. From 2013 to 2016, the δ<sup>15</sup>N values of TDN in bulk deposition showed the most pronounced temporal variation of all ecosystem solutions (δ<sup>15</sup>N values: 1.9–5.9‰). In throughfall (TF), TDN was on average <sup>15</sup>N-depleted (−1.8 ± s.d. 0.4‰) relative to rainfall (3.4 ± 0.9‰), resulting from net retention of isotopically heavy N, mainly as NH<sub>4</sub><sup>+</sup>. Simultaneously, N-isotopically light NO<sub>3</sub><sup>−</sup>-N and dissolved organic nitrogen (DON) with a δ<sup>15</sup>N value between NO<sub>3</sub><sup>−</sup>-N and NH<sub>4</sub><sup>+</sup>-N were leached from the canopy (leaves: −3.5 ± 0.5‰). The increasing δ<sup>15</sup>N values in the order, TF < stemflow (SF, 0.1 ± 0.6‰)< litter leachate (LL, 1.3 ± 0.7‰) concurred with an increasing DON contribution to TDN reflecting the δ<sup>15</sup>N value of the organic layer (1.9 ± 0.9‰). The lower δ<sup>15</sup>N value of the mineral soil solution at the 0.15 m soil depth (SS15, −1.5 ± 0.3‰) than in LL can be explained by the retention of DON and NH<sub>4</sub><sup>+</sup> and the addition of NO<sub>3</sub><sup>−</sup> from mineralization and nitrification. The increasing δ<sup>15</sup>N values in the order, SS15 < SS30 (−0.6 ± 0.2‰) < streamflow (ST, 0.5 ± 0.6‰) suggested gaseous N losses because of increasing denitrification. There was no seasonality of the δ<sup>15</sup>N values. Our results demonstrate that the δ<sup>15</sup>N values of TDN in ecosystem solutions help identify N sources and sinks in forest ecosystems.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008043\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008043","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Sources and Sinks of N in Ecosystem Solutions Along the Water Path Through a Tropical Montane Forest in Ecuador Assessed With δ15N Values of Total Dissolved Nitrogen
The globally increasing reactive N richness affects even remote ecosystems such as the tropical montane forests in Ecuador. We tested whether the δ15N values of total dissolved N (TDN), measured directly in solution with a TOC-IRMS, can be used to help elucidate N sources and sinks along the water path and thus might be suitable for ecosystem monitoring. From 2013 to 2016, the δ15N values of TDN in bulk deposition showed the most pronounced temporal variation of all ecosystem solutions (δ15N values: 1.9–5.9‰). In throughfall (TF), TDN was on average 15N-depleted (−1.8 ± s.d. 0.4‰) relative to rainfall (3.4 ± 0.9‰), resulting from net retention of isotopically heavy N, mainly as NH4+. Simultaneously, N-isotopically light NO3−-N and dissolved organic nitrogen (DON) with a δ15N value between NO3−-N and NH4+-N were leached from the canopy (leaves: −3.5 ± 0.5‰). The increasing δ15N values in the order, TF < stemflow (SF, 0.1 ± 0.6‰)< litter leachate (LL, 1.3 ± 0.7‰) concurred with an increasing DON contribution to TDN reflecting the δ15N value of the organic layer (1.9 ± 0.9‰). The lower δ15N value of the mineral soil solution at the 0.15 m soil depth (SS15, −1.5 ± 0.3‰) than in LL can be explained by the retention of DON and NH4+ and the addition of NO3− from mineralization and nitrification. The increasing δ15N values in the order, SS15 < SS30 (−0.6 ± 0.2‰) < streamflow (ST, 0.5 ± 0.6‰) suggested gaseous N losses because of increasing denitrification. There was no seasonality of the δ15N values. Our results demonstrate that the δ15N values of TDN in ecosystem solutions help identify N sources and sinks in forest ecosystems.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology