Miriam C. Jones, Debra A. Willard, Frederic C. Wurster, Molly Huber
{"title":"量化美国大沼泽国家野生动物保护区排水森林泥炭地殖民后的泥炭碳损失","authors":"Miriam C. Jones, Debra A. Willard, Frederic C. Wurster, Molly Huber","doi":"10.1029/2024JG008137","DOIUrl":null,"url":null,"abstract":"<p>Peatland carbon storage is increasingly threatened by the combination of land-use change and climate variability, though carbon losses from land-use changes that span centuries are difficult to quantify, particularly in systems where little undisturbed area remains. Here we use a combination of vegetation change, fire history, and calculations of excess ash mass to quantify carbon loss in the Great Dismal Swamp National Wildlife Refuge (GDS NWR), USA, a highly impacted oligotrophic temperate peat swamp. Our results indicate that ditch construction that began in the Colonial Era in the late 1700s and continued into the mid-20th century across the swamp resulted in shifts from cypress-tupelo swamps to a combination of maple-gum and pine pocosin forests, consistent with drying surface conditions. Two large smoldering fires (2008, 2011) that were exacerbated by surface drainage, shifted vegetation from swamp to marsh, consumed peat over 25 km<sup>2</sup>, and caused losses of 1.05–1.34 Tg C due to peat burning. Across the Refuge as a whole, up to 48.2 Tg C has been lost to peat oxidation since ditch construction. Both stocks and rates of carbon loss remain higher than post-disturbance accumulation across most of GDS NWR, suggesting that existing efforts to block drainages to elevate water tables may not be enough to offset carbon losses. Rewetting heavily impacted surface peats may reduce peat oxidation and carbon loss, and shift vegetation toward hydrologic conditions preferred by pre-disturbance cypress-tupelo swamps.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008137","citationCount":"0","resultStr":"{\"title\":\"Quantifying Post-Colonial Peat Carbon Loss From a Drained Forested Peatland, Great Dismal Swamp National Wildlife Refuge, USA\",\"authors\":\"Miriam C. Jones, Debra A. Willard, Frederic C. Wurster, Molly Huber\",\"doi\":\"10.1029/2024JG008137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peatland carbon storage is increasingly threatened by the combination of land-use change and climate variability, though carbon losses from land-use changes that span centuries are difficult to quantify, particularly in systems where little undisturbed area remains. Here we use a combination of vegetation change, fire history, and calculations of excess ash mass to quantify carbon loss in the Great Dismal Swamp National Wildlife Refuge (GDS NWR), USA, a highly impacted oligotrophic temperate peat swamp. Our results indicate that ditch construction that began in the Colonial Era in the late 1700s and continued into the mid-20th century across the swamp resulted in shifts from cypress-tupelo swamps to a combination of maple-gum and pine pocosin forests, consistent with drying surface conditions. Two large smoldering fires (2008, 2011) that were exacerbated by surface drainage, shifted vegetation from swamp to marsh, consumed peat over 25 km<sup>2</sup>, and caused losses of 1.05–1.34 Tg C due to peat burning. Across the Refuge as a whole, up to 48.2 Tg C has been lost to peat oxidation since ditch construction. Both stocks and rates of carbon loss remain higher than post-disturbance accumulation across most of GDS NWR, suggesting that existing efforts to block drainages to elevate water tables may not be enough to offset carbon losses. Rewetting heavily impacted surface peats may reduce peat oxidation and carbon loss, and shift vegetation toward hydrologic conditions preferred by pre-disturbance cypress-tupelo swamps.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008137\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008137\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008137","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying Post-Colonial Peat Carbon Loss From a Drained Forested Peatland, Great Dismal Swamp National Wildlife Refuge, USA
Peatland carbon storage is increasingly threatened by the combination of land-use change and climate variability, though carbon losses from land-use changes that span centuries are difficult to quantify, particularly in systems where little undisturbed area remains. Here we use a combination of vegetation change, fire history, and calculations of excess ash mass to quantify carbon loss in the Great Dismal Swamp National Wildlife Refuge (GDS NWR), USA, a highly impacted oligotrophic temperate peat swamp. Our results indicate that ditch construction that began in the Colonial Era in the late 1700s and continued into the mid-20th century across the swamp resulted in shifts from cypress-tupelo swamps to a combination of maple-gum and pine pocosin forests, consistent with drying surface conditions. Two large smoldering fires (2008, 2011) that were exacerbated by surface drainage, shifted vegetation from swamp to marsh, consumed peat over 25 km2, and caused losses of 1.05–1.34 Tg C due to peat burning. Across the Refuge as a whole, up to 48.2 Tg C has been lost to peat oxidation since ditch construction. Both stocks and rates of carbon loss remain higher than post-disturbance accumulation across most of GDS NWR, suggesting that existing efforts to block drainages to elevate water tables may not be enough to offset carbon losses. Rewetting heavily impacted surface peats may reduce peat oxidation and carbon loss, and shift vegetation toward hydrologic conditions preferred by pre-disturbance cypress-tupelo swamps.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology