类似神经组织而非超生理电导率通过钙信号转导和表观遗传修饰刺激神经元系谱的形成(科学进展 35/2024)

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-26 DOI:10.1002/advs.202470215
Yu-Meng Li, Yunseong Ji, Yu-Xuan Meng, Yu-Jin Kim, Hwalim Lee, Amal George Kurian, Jeong-Hui Park, Ji-Young Yoon, Jonathan C. Knowles, Yunkyu Choi, Yoon-Sik Kim, Bo-Eun Yoon, Rajendra K. Singh, Hae-Hyoung Lee, Hae-Won Kim, Jung-Hwan Lee
{"title":"类似神经组织而非超生理电导率通过钙信号转导和表观遗传修饰刺激神经元系谱的形成(科学进展 35/2024)","authors":"Yu-Meng Li,&nbsp;Yunseong Ji,&nbsp;Yu-Xuan Meng,&nbsp;Yu-Jin Kim,&nbsp;Hwalim Lee,&nbsp;Amal George Kurian,&nbsp;Jeong-Hui Park,&nbsp;Ji-Young Yoon,&nbsp;Jonathan C. Knowles,&nbsp;Yunkyu Choi,&nbsp;Yoon-Sik Kim,&nbsp;Bo-Eun Yoon,&nbsp;Rajendra K. Singh,&nbsp;Hae-Hyoung Lee,&nbsp;Hae-Won Kim,&nbsp;Jung-Hwan Lee","doi":"10.1002/advs.202470215","DOIUrl":null,"url":null,"abstract":"<p><b>Conductivity-Dependent Neuronal Specification</b></p><p>In article number 2400586, Hae-Won Kim, Jung-Hwan Lee, and co-workers show that neural-tissue-like, low conductivity (0.02–0.1 S m–1) promotes neuronal differentiation via balanced calcium signaling and epigenetic changes, while supraphysiological, high conductivity (3.2 S m–1) causes apoptosis. This work reveals optimal conductivity's crucial role in neural interface design for tissue engineering and regenerative medicine.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202470215","citationCount":"0","resultStr":"{\"title\":\"Neural Tissue-Like, not Supraphysiological, Electrical Conductivity Stimulates Neuronal Lineage Specification through Calcium Signaling and Epigenetic Modification (Adv. Sci. 35/2024)\",\"authors\":\"Yu-Meng Li,&nbsp;Yunseong Ji,&nbsp;Yu-Xuan Meng,&nbsp;Yu-Jin Kim,&nbsp;Hwalim Lee,&nbsp;Amal George Kurian,&nbsp;Jeong-Hui Park,&nbsp;Ji-Young Yoon,&nbsp;Jonathan C. Knowles,&nbsp;Yunkyu Choi,&nbsp;Yoon-Sik Kim,&nbsp;Bo-Eun Yoon,&nbsp;Rajendra K. Singh,&nbsp;Hae-Hyoung Lee,&nbsp;Hae-Won Kim,&nbsp;Jung-Hwan Lee\",\"doi\":\"10.1002/advs.202470215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Conductivity-Dependent Neuronal Specification</b></p><p>In article number 2400586, Hae-Won Kim, Jung-Hwan Lee, and co-workers show that neural-tissue-like, low conductivity (0.02–0.1 S m–1) promotes neuronal differentiation via balanced calcium signaling and epigenetic changes, while supraphysiological, high conductivity (3.2 S m–1) causes apoptosis. This work reveals optimal conductivity's crucial role in neural interface design for tissue engineering and regenerative medicine.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202470215\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202470215\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202470215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

依赖电导率的神经元分化在文章编号 2400586 中,Hae-Won Kim、Jung-Hwan Lee 及合作者展示了类似神经组织的低电导率(0.02-0.1 S m-1)可通过平衡钙信号传导和表观遗传变化促进神经元分化,而超生理的高电导率(3.2 S m-1)则会导致神经细胞凋亡。这项研究揭示了最佳电导率在组织工程和再生医学的神经接口设计中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Tissue-Like, not Supraphysiological, Electrical Conductivity Stimulates Neuronal Lineage Specification through Calcium Signaling and Epigenetic Modification (Adv. Sci. 35/2024)

Conductivity-Dependent Neuronal Specification

In article number 2400586, Hae-Won Kim, Jung-Hwan Lee, and co-workers show that neural-tissue-like, low conductivity (0.02–0.1 S m–1) promotes neuronal differentiation via balanced calcium signaling and epigenetic changes, while supraphysiological, high conductivity (3.2 S m–1) causes apoptosis. This work reveals optimal conductivity's crucial role in neural interface design for tissue engineering and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
A CC-NB-ARC-LRR Gene Regulates Bract Morphology in Cotton. From Small Data Modeling to Large Language Model Screening: A Dual-Strategy Framework for Materials Intelligent Design. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. Surface Optimization of Noble-Metal-Free Conductive [Mn1/4Co1/2Ni1/4]O2 Nanosheets for Boosting Their Efficacy as Hybridization Matrices. The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1