氯化钙作为金属有机框架填充纳米孔(MOF@SSNs)中的离子响应调制器:提高离子电流饱和度和选择性

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-09-27 DOI:10.1039/d4qi01575d
Angel Luciano Huamani, Gregorio Laucirica, Juan A Allegretto, Maria Eugenia Toimil-Molares, Aline Ribeiro Passos, Agustin Silvio Picco, Marcelo Ceolín, Omar Azzaroni, Waldemar Alejandro Marmisollé, Matias Rafti
{"title":"氯化钙作为金属有机框架填充纳米孔(MOF@SSNs)中的离子响应调制器:提高离子电流饱和度和选择性","authors":"Angel Luciano Huamani, Gregorio Laucirica, Juan A Allegretto, Maria Eugenia Toimil-Molares, Aline Ribeiro Passos, Agustin Silvio Picco, Marcelo Ceolín, Omar Azzaroni, Waldemar Alejandro Marmisollé, Matias Rafti","doi":"10.1039/d4qi01575d","DOIUrl":null,"url":null,"abstract":"We studied ionic transport properties of UiO-66 metal-organic framework-modified solid-state nanochannels (MOF@SSNs) embedded in polyethylene terephthalate (PET) membranes, focusing on the effect of calcium ions from chloride salt (CaCl2) acting as ionic response modulator. We observed a behavior known as ionic current saturation (ICS) regime in a broad pH range, which can be attributed to specific binding of divalent calcium ions to free-carboxylate moieties present in the MOF-filled nanochannels. Such binding provokes a surface charge increase and causes the ICS regime to dominate the response even in alkaline aqueous environments, which were previously shown to feature simple ohmic regimes. The primary ionic transport mechanism operating involves the presence of (mesoscopic) constructional porosity arising from defects and gaps generated during MOF formation within PET nanochannels, rather than intrinsic MOF microporosity also present. The hereby discussed example illustrates how, through straightforward chemical modification, ionic transport properties of the nanochannels can be modulated to feature specific responses necessary for high-impact applications such as ion selective transport, biosensing, or energy generation.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium Chloride as an Ionic Response Modulator in Metal Organic Framework-filled Nanopores (MOF@SSNs): Enhancing Ionic Current Saturation and Selectivity\",\"authors\":\"Angel Luciano Huamani, Gregorio Laucirica, Juan A Allegretto, Maria Eugenia Toimil-Molares, Aline Ribeiro Passos, Agustin Silvio Picco, Marcelo Ceolín, Omar Azzaroni, Waldemar Alejandro Marmisollé, Matias Rafti\",\"doi\":\"10.1039/d4qi01575d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied ionic transport properties of UiO-66 metal-organic framework-modified solid-state nanochannels (MOF@SSNs) embedded in polyethylene terephthalate (PET) membranes, focusing on the effect of calcium ions from chloride salt (CaCl2) acting as ionic response modulator. We observed a behavior known as ionic current saturation (ICS) regime in a broad pH range, which can be attributed to specific binding of divalent calcium ions to free-carboxylate moieties present in the MOF-filled nanochannels. Such binding provokes a surface charge increase and causes the ICS regime to dominate the response even in alkaline aqueous environments, which were previously shown to feature simple ohmic regimes. The primary ionic transport mechanism operating involves the presence of (mesoscopic) constructional porosity arising from defects and gaps generated during MOF formation within PET nanochannels, rather than intrinsic MOF microporosity also present. The hereby discussed example illustrates how, through straightforward chemical modification, ionic transport properties of the nanochannels can be modulated to feature specific responses necessary for high-impact applications such as ion selective transport, biosensing, or energy generation.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi01575d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01575d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了嵌入聚对苯二甲酸乙二醇酯(PET)膜的 UiO-66 金属有机框架修饰固态纳米通道(MOF@SSNs)的离子传输特性,重点研究了作为离子响应调制剂的氯盐(CaCl2)中钙离子的影响。我们在广泛的 pH 值范围内观察到了一种被称为离子电流饱和(ICS)机制的行为,这可归因于二价钙离子与 MOF 填充纳米通道中存在的游离羧酸分子的特异性结合。这种结合会导致表面电荷增加,即使在碱性水环境中,ICS 状态也会主导反应。运行的主要离子传输机制涉及 PET 纳米通道内 MOF 形成过程中产生的缺陷和间隙所形成的(介观)构造孔隙,而不是 MOF 固有的微孔。本文讨论的示例说明了如何通过直接的化学修饰来调节纳米通道的离子传输特性,使其具有离子选择性传输、生物传感或能源生成等高影响力应用所需的特定响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calcium Chloride as an Ionic Response Modulator in Metal Organic Framework-filled Nanopores (MOF@SSNs): Enhancing Ionic Current Saturation and Selectivity
We studied ionic transport properties of UiO-66 metal-organic framework-modified solid-state nanochannels (MOF@SSNs) embedded in polyethylene terephthalate (PET) membranes, focusing on the effect of calcium ions from chloride salt (CaCl2) acting as ionic response modulator. We observed a behavior known as ionic current saturation (ICS) regime in a broad pH range, which can be attributed to specific binding of divalent calcium ions to free-carboxylate moieties present in the MOF-filled nanochannels. Such binding provokes a surface charge increase and causes the ICS regime to dominate the response even in alkaline aqueous environments, which were previously shown to feature simple ohmic regimes. The primary ionic transport mechanism operating involves the presence of (mesoscopic) constructional porosity arising from defects and gaps generated during MOF formation within PET nanochannels, rather than intrinsic MOF microporosity also present. The hereby discussed example illustrates how, through straightforward chemical modification, ionic transport properties of the nanochannels can be modulated to feature specific responses necessary for high-impact applications such as ion selective transport, biosensing, or energy generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Significant Adsorption Enhancements Driven by Pore Microenvironment Tuning for Efficient C2H2/C2H4 Separation in a Chemically Stable Ni7-Cluster-based framework High-Entropy FeCoMnCuNi diselenide Self-Standing Electrode with Outstanding Water-Electrolysis Performance in Alkaline Medium Calcium Chloride as an Ionic Response Modulator in Metal Organic Framework-filled Nanopores (MOF@SSNs): Enhancing Ionic Current Saturation and Selectivity Rationally reconstructing the surface microstructure of chemical bath deposited electron transport layer for efficient and stable perovskite solar cells Elucidating the local structure of Li1+xAlxTi2–x(PO4)3 and Li3AlxTi2–x(PO4)3 (x = 0, 0.3) via total scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1