Fe-S二元调制吸附剂演化与晶格氧兼容的水氧化机制

IF 3.784 3区 化学 Q1 Chemistry ACS Combinatorial Science Pub Date : 2024-09-27 DOI:10.1038/s41467-024-52682-y
Xu Luo, Hongyu Zhao, Xin Tan, Sheng Lin, Kesong Yu, Xueqin Mu, Zhenhua Tao, Pengxia Ji, Shichun Mu
{"title":"Fe-S二元调制吸附剂演化与晶格氧兼容的水氧化机制","authors":"Xu Luo, Hongyu Zhao, Xin Tan, Sheng Lin, Kesong Yu, Xueqin Mu, Zhenhua Tao, Pengxia Ji, Shichun Mu","doi":"10.1038/s41467-024-52682-y","DOIUrl":null,"url":null,"abstract":"<p>Simultaneously activating metal and lattice oxygen sites to construct a compatible multi-mechanism catalysis is expected for the oxygen evolution reaction (OER) by providing highly available active sites and mediate catalytic activity/stability, but significant challenges remain. Herein, Fe and S dually modulated NiFe oxyhydroxide (R-NiFeOOH@SO<sub>4</sub>) is conceived by complete reconstruction of NiMoO<sub>4</sub>·xH<sub>2</sub>O@Fe,S during OER, and achieves compatible adsorbate evolution mechanism and lattice oxygen oxidation mechanism with simultaneously optimized metal/oxygen sites, as substantiated by in situ spectroscopy/mass spectrometry and chemical probe. Further theoretical analyses reveal that Fe promotes the OER kinetics under adsorbate evolution mechanism, while S excites the lattice oxygen activity under lattice oxygen oxidation mechanism, featuring upshifted O 2<i>p</i> band centers, enlarged d-d Coulomb interaction, weakened metal-oxygen bond and optimized intermediate adsorption free energy. Benefiting from the compatible multi-mechanism, R-NiFeOOH@SO<sub>4</sub> only requires overpotentials of 251 ± 5/291 ± 1 mV to drive current densities of 100/500 mA cm<sup>−2</sup> in alkaline media, with robust stability for over 300 h. This work provides insights in understanding the OER mechanism to better design high-performance OER catalysts.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation\",\"authors\":\"Xu Luo, Hongyu Zhao, Xin Tan, Sheng Lin, Kesong Yu, Xueqin Mu, Zhenhua Tao, Pengxia Ji, Shichun Mu\",\"doi\":\"10.1038/s41467-024-52682-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simultaneously activating metal and lattice oxygen sites to construct a compatible multi-mechanism catalysis is expected for the oxygen evolution reaction (OER) by providing highly available active sites and mediate catalytic activity/stability, but significant challenges remain. Herein, Fe and S dually modulated NiFe oxyhydroxide (R-NiFeOOH@SO<sub>4</sub>) is conceived by complete reconstruction of NiMoO<sub>4</sub>·xH<sub>2</sub>O@Fe,S during OER, and achieves compatible adsorbate evolution mechanism and lattice oxygen oxidation mechanism with simultaneously optimized metal/oxygen sites, as substantiated by in situ spectroscopy/mass spectrometry and chemical probe. Further theoretical analyses reveal that Fe promotes the OER kinetics under adsorbate evolution mechanism, while S excites the lattice oxygen activity under lattice oxygen oxidation mechanism, featuring upshifted O 2<i>p</i> band centers, enlarged d-d Coulomb interaction, weakened metal-oxygen bond and optimized intermediate adsorption free energy. Benefiting from the compatible multi-mechanism, R-NiFeOOH@SO<sub>4</sub> only requires overpotentials of 251 ± 5/291 ± 1 mV to drive current densities of 100/500 mA cm<sup>−2</sup> in alkaline media, with robust stability for over 300 h. This work provides insights in understanding the OER mechanism to better design high-performance OER catalysts.</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52682-y\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52682-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

同时激活金属和晶格氧位点以构建兼容的多机制催化,有望为氧进化反应(OER)提供高可用性的活性位点,并提高催化活性/稳定性,但这仍是一项重大挑战。在此,通过在 OER 过程中完全重构 NiMoO4-xH2O@Fe,S,构想出了铁和 S 双调制的氢氧化镍铁(R-NiFeOOH@SO4),并通过同时优化金属/氧位点实现了兼容的吸附剂进化机制和晶格氧氧化机制,这一点已通过原位光谱/质谱分析和化学探针得到证实。进一步的理论分析表明,铁在吸附剂演化机制下促进了 OER 动力学,而 S 在晶格氧氧化机制下激发了晶格氧活性,其特点是 O 2p 带中心上移、d-d 库仑相互作用扩大、金属-氧键减弱以及中间吸附自由能优化。得益于兼容的多机制,R-NiFeOOH@SO4 在碱性介质中只需要 251 ± 5/291 ± 1 mV 的过电位就能驱动 100/500 mA cm-2 的电流密度,并且稳定性超过 300 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation

Simultaneously activating metal and lattice oxygen sites to construct a compatible multi-mechanism catalysis is expected for the oxygen evolution reaction (OER) by providing highly available active sites and mediate catalytic activity/stability, but significant challenges remain. Herein, Fe and S dually modulated NiFe oxyhydroxide (R-NiFeOOH@SO4) is conceived by complete reconstruction of NiMoO4·xH2O@Fe,S during OER, and achieves compatible adsorbate evolution mechanism and lattice oxygen oxidation mechanism with simultaneously optimized metal/oxygen sites, as substantiated by in situ spectroscopy/mass spectrometry and chemical probe. Further theoretical analyses reveal that Fe promotes the OER kinetics under adsorbate evolution mechanism, while S excites the lattice oxygen activity under lattice oxygen oxidation mechanism, featuring upshifted O 2p band centers, enlarged d-d Coulomb interaction, weakened metal-oxygen bond and optimized intermediate adsorption free energy. Benefiting from the compatible multi-mechanism, R-NiFeOOH@SO4 only requires overpotentials of 251 ± 5/291 ± 1 mV to drive current densities of 100/500 mA cm−2 in alkaline media, with robust stability for over 300 h. This work provides insights in understanding the OER mechanism to better design high-performance OER catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
期刊最新文献
Reply. The role of endometrial scratching in IVF/ICSI: a critical appraisal of individual participant data meta-analysis. The role of endometrial scratching in IVF/ICSI: a critical appraisal of individual participant data meta-analysis. Does the holy grail of the evidence pyramid vindicate the controversial practice of endometrial scratching or is there room for healthy skepticism? Reply. How much evidence is needed to stop calling endometrial scratching 'controversial'? Cellular mechanisms of monozygotic twinning: clues from assisted reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1