Jiadong He, Lin Zhang, Judith Van Dingenen, Sandrien Desmet, Sofie Goormachtig, Maryline Calonne-Salmon, Stéphane Declerck
{"title":"丛生菌根菌丝促进豆科植物根瘤菌的传播和结瘤","authors":"Jiadong He, Lin Zhang, Judith Van Dingenen, Sandrien Desmet, Sofie Goormachtig, Maryline Calonne-Salmon, Stéphane Declerck","doi":"10.1093/ismejo/wrae185","DOIUrl":null,"url":null,"abstract":"In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e., flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with S. meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes\",\"authors\":\"Jiadong He, Lin Zhang, Judith Van Dingenen, Sandrien Desmet, Sofie Goormachtig, Maryline Calonne-Salmon, Stéphane Declerck\",\"doi\":\"10.1093/ismejo/wrae185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e., flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with S. meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes
In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e., flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with S. meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.