Lukas Lindner, Felix A. Hahl, Tingpeng Luo, Guillermo Nava Antonio, Xavier Vidal, Marcel Rattunde, Takeshi Ohshima, Joachim Sacher, Qiang Sun, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Rüdiger Quay, Jan Jeske
{"title":"双介质激光系统:氮空位金刚石和红色半导体激光器","authors":"Lukas Lindner, Felix A. Hahl, Tingpeng Luo, Guillermo Nava Antonio, Xavier Vidal, Marcel Rattunde, Takeshi Ohshima, Joachim Sacher, Qiang Sun, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Rüdiger Quay, Jan Jeske","doi":"10.1126/sciadv.adj3933","DOIUrl":null,"url":null,"abstract":"<div >Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.</div>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adj3933","citationCount":"0","resultStr":"{\"title\":\"Dual-media laser system: Nitrogen vacancy diamond and red semiconductor laser\",\"authors\":\"Lukas Lindner, Felix A. Hahl, Tingpeng Luo, Guillermo Nava Antonio, Xavier Vidal, Marcel Rattunde, Takeshi Ohshima, Joachim Sacher, Qiang Sun, Marco Capelli, Brant C. Gibson, Andrew D. Greentree, Rüdiger Quay, Jan Jeske\",\"doi\":\"10.1126/sciadv.adj3933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.</div>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adj3933\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adj3933\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adj3933","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dual-media laser system: Nitrogen vacancy diamond and red semiconductor laser
Diamond is a potential host material for laser applications due to its exceptional thermal properties, ultrawide bandgap, and color centers, which promise gain across the visible spectrum. More recently, coherent laser methods offer improved sensitivity for magnetometry. However, diamond fabrication is difficult in comparison to other crystalline matrices, and many optical loss channels are not yet understood. Here, we demonstrate a continuous-wave laser threshold as a function of the pump intensity on nitrogen-vacancy (NV) color centers. To achieve this, we constructed a laser cavity with both an NV diamond medium and an intracavity antireflection-coated diode laser. This dual-medium approach compensates intrinsic losses of the cavity by providing a fixed additional gain below threshold of the diode laser. We observe a continuous-wave laser threshold of the laser system and linewidth narrowing with increasing green pump power on the NV centers. Our results are a major development toward coherent approaches to magnetometry.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.