电子束辐照制备的火山炭黑上的原子级分散铂作为氢气进化反应的催化剂

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-09-18 DOI:10.1021/acsanm.4c0404910.1021/acsanm.4c04049
Jie Gan, Shaokang Jiang, Liang Fu, Ying Chang, Jianbing Chen, Maojiang Zhang* and Guozhong Wu*, 
{"title":"电子束辐照制备的火山炭黑上的原子级分散铂作为氢气进化反应的催化剂","authors":"Jie Gan,&nbsp;Shaokang Jiang,&nbsp;Liang Fu,&nbsp;Ying Chang,&nbsp;Jianbing Chen,&nbsp;Maojiang Zhang* and Guozhong Wu*,&nbsp;","doi":"10.1021/acsanm.4c0404910.1021/acsanm.4c04049","DOIUrl":null,"url":null,"abstract":"<p >Pursuing and developing elegant and general approaches for the large-scale production of atomic-level dispersed Pt catalysts are attractive for effective hydrogen production via water electrolysis. Herein, we propose an eco-friendly, cost-efficient, and scalable strategy by combining incipient wetness impregnation with electron beam irradiation to synthesize atomic-level dispersed 8 wt % Pt anchored on a carbon support. The Pt<sup>4+</sup> ions are efficiently reduced in situ to Pt<sup>2+</sup> while simultaneously inducing surface groups on the carbon support. The excellent catalytic performance for the Pt-catalyzed hydrogen evolution reaction (HER) has been demonstrated on the basis of electrochemical tests, kinetic analyses, and the Tafel mechanism. We clarified the influence of absorbed dose on the active site number, surface functional groups, defect levels, electronic structure, and local environment of the catalysts. At the optimal dose of 100 kGy, one can attain the utmost level of Pt<sup>2+</sup> content and generate a greater abundance of oxygen-containing functional groups on the carbon support, resulting in 4.5 times higher HER activity than the commercial 20% Pt/C. This work provides a scientific paradigm to design and develop atomically dispersed precious metal catalysts for efficient and scalable electrolytic water splitting.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Level Dispersed Pt on Vulcan Carbon Black Prepared by Electron Beam Irradiation as a Catalyst for the Hydrogen Evolution Reaction\",\"authors\":\"Jie Gan,&nbsp;Shaokang Jiang,&nbsp;Liang Fu,&nbsp;Ying Chang,&nbsp;Jianbing Chen,&nbsp;Maojiang Zhang* and Guozhong Wu*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0404910.1021/acsanm.4c04049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pursuing and developing elegant and general approaches for the large-scale production of atomic-level dispersed Pt catalysts are attractive for effective hydrogen production via water electrolysis. Herein, we propose an eco-friendly, cost-efficient, and scalable strategy by combining incipient wetness impregnation with electron beam irradiation to synthesize atomic-level dispersed 8 wt % Pt anchored on a carbon support. The Pt<sup>4+</sup> ions are efficiently reduced in situ to Pt<sup>2+</sup> while simultaneously inducing surface groups on the carbon support. The excellent catalytic performance for the Pt-catalyzed hydrogen evolution reaction (HER) has been demonstrated on the basis of electrochemical tests, kinetic analyses, and the Tafel mechanism. We clarified the influence of absorbed dose on the active site number, surface functional groups, defect levels, electronic structure, and local environment of the catalysts. At the optimal dose of 100 kGy, one can attain the utmost level of Pt<sup>2+</sup> content and generate a greater abundance of oxygen-containing functional groups on the carbon support, resulting in 4.5 times higher HER activity than the commercial 20% Pt/C. This work provides a scientific paradigm to design and develop atomically dispersed precious metal catalysts for efficient and scalable electrolytic water splitting.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c04049\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

追求和开发用于大规模生产原子级分散铂催化剂的优雅而通用的方法对于通过水电解有效制氢具有吸引力。在此,我们提出了一种环保、低成本、可扩展的策略,即结合初湿浸渍和电子束辐照,合成锚定在碳载体上的原子级分散的 8 wt % Pt。Pt4+ 离子在原位被有效还原成 Pt2+,同时在碳载体上诱导出表面基团。基于电化学测试、动力学分析和 Tafel 机理,证明了铂催化氢进化反应(HER)的优异催化性能。我们阐明了吸收剂量对催化剂活性位点数量、表面官能团、缺陷水平、电子结构和局部环境的影响。在 100 kGy 的最佳剂量下,Pt2+ 的含量可以达到最高水平,并在碳载体上产生更丰富的含氧官能团,从而使 HER 活性比商业 20% Pt/C 高出 4.5 倍。这项研究为设计和开发原子分散贵金属催化剂提供了一个科学范例,可用于高效和可扩展的电解水分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-Level Dispersed Pt on Vulcan Carbon Black Prepared by Electron Beam Irradiation as a Catalyst for the Hydrogen Evolution Reaction

Pursuing and developing elegant and general approaches for the large-scale production of atomic-level dispersed Pt catalysts are attractive for effective hydrogen production via water electrolysis. Herein, we propose an eco-friendly, cost-efficient, and scalable strategy by combining incipient wetness impregnation with electron beam irradiation to synthesize atomic-level dispersed 8 wt % Pt anchored on a carbon support. The Pt4+ ions are efficiently reduced in situ to Pt2+ while simultaneously inducing surface groups on the carbon support. The excellent catalytic performance for the Pt-catalyzed hydrogen evolution reaction (HER) has been demonstrated on the basis of electrochemical tests, kinetic analyses, and the Tafel mechanism. We clarified the influence of absorbed dose on the active site number, surface functional groups, defect levels, electronic structure, and local environment of the catalysts. At the optimal dose of 100 kGy, one can attain the utmost level of Pt2+ content and generate a greater abundance of oxygen-containing functional groups on the carbon support, resulting in 4.5 times higher HER activity than the commercial 20% Pt/C. This work provides a scientific paradigm to design and develop atomically dispersed precious metal catalysts for efficient and scalable electrolytic water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Room-Temperature Synthesis of Au@AuCu Alloyed Nanorods in Aqueous Solutions for High Catalytic Activity and Enhanced Stability Achieving High Quantum Efficiency in Cs3Cu2I5 Nanocrystals by the A-Site Ion Substitution for Flexible Blue Electroluminescence Devices and Enhanced Photovoltaic Cells Manganese and Cobalt Heterostructures in Carbon Aerogels for the Improved Electrochemical Performance of Supercapacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1